Skip to main content

Reconstructing Gene Regulatory Networks That Control Hematopoietic Commitment

  • Protocol
  • First Online:
Computational Stem Cell Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1975))

Abstract

Hematopoietic stem cells (HSCs) reside at the apex of the hematopoietic hierarchy, possessing the ability to self-renew and differentiate toward all mature blood lineages. Along with more specialized progenitor cells, HSCs have an essential role in maintaining a healthy blood system. Incorrect regulation of cell fate decisions in stem/progenitor cells can lead to an imbalance of mature blood cell populations—a situation seen in diseases such as leukemia. Transcription factors, acting as part of complex regulatory networks, are known to play an important role in regulating hematopoietic cell fate decisions. Yet, discovering the interactions present in these networks remains a big challenge. Here, we discuss a computational method that uses single-cell gene expression data to reconstruct Boolean gene regulatory network models and show how this technique can be applied to enhance our understanding of transcriptional regulation in hematopoiesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davidson EH, Peter IS (2015) Genomic control process, 2nd edn. Academic Press, Oxford

    Google Scholar 

  2. Göttgens B (2015) Regulatory network control of blood stem cells. Blood 125:2614–2620

    Article  PubMed  Google Scholar 

  3. Marbach D, Costello JC, Küffner R et al (2012) Wisdom of crowds for robust gene network inference. Nat Methods 9:796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Krumsiek J, Marr C, Schroeder T, Theis FJ (2011) Hierarchical differentiation of myeloid progenitors is encoded in the transcription factor network. PLoS One 6:e22649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Collombet S, van Oevelen C, Sardina Ortega JL et al (2017) Logical modeling of lymphoid and myeloid cell specification and transdifferentiation. Proc Natl Acad Sci 114:5792–5799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bonzanni N, Garg A, Feenstra KA et al (2013) Hard-wired heterogeneity in blood stem cells revealed using a dynamic regulatory network model. Bioinformatics 29:i80–i88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wilson NK, Kent DG, Buettner F et al (2015) Combined single-cell functional and gene expression analysis resolves heterogeneity within stem cell populations. Cell Stem Cell 16:712–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Moignard V, Macaulay IC, Swiers G et al (2013) Characterization of transcriptional networks in blood stem and progenitor cells using high-throughput single-cell gene expression analysis. Nat Cell Biol 15:363–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pina C, Teles J, Fugazza C et al (2015) Single-cell network analysis identifies DDIT3 as a nodal lineage regulator in hematopoiesis. Cell Rep 11:1503–1510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xu H, Ang Y-S, Sevilla A et al (2014) Construction and validation of a regulatory network for pluripotency and self-renewal of mouse embryonic stem cells. PLoS Comput Biol 10:e1003777

    Article  PubMed  PubMed Central  Google Scholar 

  11. Moignard V, Woodhouse S, Haghverdi L et al (2015) Decoding the regulatory network of early blood development from single-cell gene expression measurements. Nat Biotechnol 33:269–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hamey FK, Nestorowa S, Kinston SJ et al (2017) Reconstructing blood stem cell regulatory network models from single-cell molecular profiles. Proc Natl Acad Sci 114:5822–5829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Trapnell C, Cacchiarelli D, Grimsby J et al (2014) The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 32:381–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bendall SC, Davis KL, Amir E-AD et al (2014) Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell 157:714–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Haghverdi L, Büttner M, Wolf FA et al (2016) Diffusion pseudotime robustly reconstructs lineage branching. Nat Methods 13:845–848

    Article  CAS  PubMed  Google Scholar 

  16. Setty M, Tadmor MD, Reich-Zeliger S et al (2016) Wishbone identifies bifurcating developmental trajectories from single-cell data. Nat Biotechnol 34:637–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Qiu X, Mao Q, Tang Y et al (2017) Reversed graph embedding resolves complex single-cell trajectories. Nat Methods 14:979–982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Haghverdi L, Buettner F, Theis FJ (2015) Diffusion maps for high-dimensional single-cell analysis of differentiation data. Bioinformatics 31:1–10

    Article  Google Scholar 

  19. Ocone A, Haghverdi L, Mueller NS, Theis FJ (2015) Reconstructing gene regulatory dynamics from high-dimensional single-cell snapshot data. Bioinformatics 31:i89–i96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Angerer P, Haghverdi L, Büttner M et al (2016) destiny: diffusion maps for large-scale single-cell data in R. Bioinformatics 32:1241–1243

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work in the author’s laboratory is supported by grants from Wellcome, Bloodwise, Cancer Research UK, and NIH-NIDDK and core support grants by Wellcome to the Cambridge Institute for Medical Research and Wellcome-MRC Cambridge Stem Cell Institute. F.K.H. is a recipient of a Medical Research Council PhD Studentship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berthold Göttgens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hamey, F.K., Göttgens, B. (2019). Reconstructing Gene Regulatory Networks That Control Hematopoietic Commitment. In: Cahan, P. (eds) Computational Stem Cell Biology. Methods in Molecular Biology, vol 1975. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9224-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9224-9_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9223-2

  • Online ISBN: 978-1-4939-9224-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics