Skip to main content

Aminoglycoside Functionalization as a Tool for Targeting Nucleic Acids

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1973))

Abstract

Aminoglycoside functionalization as a tool for targeting natural and unnatural nucleic acids holds great promise in their development as diagnostic probes and medicinally relevant compounds. Simple synthetic procedures designed to easily and quickly manipulate amino sugar (neomycin, kanamycin) to more powerful and selective ligands are presented in this chapter. We describe representative procedures for (a) aminoglycoside conjugation and (b) preliminary screening for their nucleic acid binding and selectivity.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Arya DP (2007) Aminoglycoside antibiotics: from chemical biology to drug discovery. Wiley-Interscience, Hoboken, N.J, p 319

    Google Scholar 

  2. Willis B, Arya DP (2006) An expanding view of aminoglycoside–nucleic acid recognition. Adv Carbohydr Chem Biochem 60:251–302

    CAS  Google Scholar 

  3. Lynch SR, Puglisi JD (2001) Structural origins of aminoglycoside specificity for prokaryotic ribosomes. J Mol Biol 306:1037–1058

    CAS  Google Scholar 

  4. Davies JE (1964) Studies on the ribosomes of streptomycin-sensitive and resistant strains of Escherichia Coli. Proc Natl Acad Sci U S A 51:659–664

    CAS  Google Scholar 

  5. Arya DP, Xue L, Willis B (2003) Aminoglycoside (neomycin) preference is for a-form nucleic acids, not just RNA: results from a competition dialysis study. J Am Chem Soc 125:10148–10149

    CAS  Google Scholar 

  6. Xi H, Davis E, Ranjan N, Xue L, Hyde-Volpe D, Arya DP (2011) Thermodynamics of nucleic acid “shape readout” by an aminosugar. Biochemistry 50:9088–9113

    CAS  Google Scholar 

  7. Earnshaw DJ, Gait MJ (1998) Hairpin ribozyme cleavage catalyzed by aminoglycoside antibiotics and the polyamine spermine in the absence of metal ions. Nucleic Acids Res 26:5551–5561

    CAS  Google Scholar 

  8. Hoch I, Berens C, Westhof E, Schroeder R (1998) Antibiotic inhibition of RNA catalysis : neomycin B binds to the catalytic core of the td group I intron displacing essential metal ions. J Mol Biol 282:557–569

    CAS  Google Scholar 

  9. Clouet-d'Orval B, Stage TK, Uhlenbeck OC (1995) Neomycin inhibition of the hammerhead ribozyme involves ionic interactions. Biochemistry 34:11186–11190

    CAS  Google Scholar 

  10. Chia JS, Wu HL, Wang HW, Chen DS, Chen PJ (1997) Inhibition of hepatitis delta virus genomic ribozyme self-cleavage by aminoglycosides. J Bio Med Sci 4:208–216

    CAS  Google Scholar 

  11. Kumar S, Kellish P, Robinson WE, Wang D, Appella DH, Arya DP (2012) Click dimers to target HIV TAR RNA conformation. Biochemistry 51:2331–2347

    CAS  Google Scholar 

  12. Kumar S, Arya DP (2011) Recognition of HIV TAR RNA by triazole linked neomycin dimers. Bioorg Med Chem Lett 21:4788–4792

    CAS  Google Scholar 

  13. Kumar S, Ranjan N, Kellish P, Gong C, Watkins D, Arya DP (2016) Multivalency in the recognition and antagonism of a HIV TAR RNA–TAT assembly using an aminoglycoside benzimidazole scaffold. Org Biomol Chem 14:2052–2056

    CAS  Google Scholar 

  14. Ranjan N, Kumar S, Watkins D, Wang D, Appella DH, Arya DP (2013) Recognition of HIV-TAR RNA using neomycin–benzimidazole conjugates. Bioorg Med Chem Lett 23:5689–5693

    CAS  Google Scholar 

  15. Tok JB, Dunn LJ, Des Jean RC (2001) Binding of dimeric aminoglycosides to the HIV-1 rev responsive element (RRE) RNA construct. Bioorg Med Chem Lett 11:1127–1131

    CAS  Google Scholar 

  16. Watkins D, Gong C, Kellish P, Arya DP (2017) Probing A-form DNA: a fluorescent aminosugar probe and dual recognition by anthraquinone-neomycin conjugates. Bioorg Med Chem 25:1309–ch1319. S0968-0896(16)30730-1 [pii]

    CAS  Google Scholar 

  17. Willis B, Arya DP (2006) Major groove recognition of DNA by carbohydrates. Curr Org Chem 10:663–673

    CAS  Google Scholar 

  18. Willis B, Arya DP (2009) Triple recognition of B-DNA. Bioorg Med Chem Lett 19:4974–4979

    CAS  Google Scholar 

  19. Willis B, Arya D (2009) Triple recognition of B-DNA by a neomycin−Hoechst 33258−pyrene conjugate. Biochemistry 49:452–469

    Google Scholar 

  20. Willis B, Arya DP (2006) Recognition of B-DNA by neomycin−Hoechst 33258 conjugates. Biochemistry 45:10217–10232

    CAS  Google Scholar 

  21. Kumar S, Xue L, Arya DP (2011) Neomycin-neomycin dimer: an all-carbohydrate scaffold with high affinity for AT-rich DNA duplexes. J Am Chem Soc 133:7361–7375

    CAS  Google Scholar 

  22. Kumar S, Spano MN, Arya DP (2015) Influence of linker length in shape recognition of B* DNA by dimeric aminoglycosides. Bioorg Med Chem 23:3105–3109. https://doi.org/10.1016/j.bmc.2015.04.082

    Article  CAS  Google Scholar 

  23. Arya DP, Coffee RL, Xue L (2004) From triplex to B-form duplex stabilization: reversal of target selectivity by aminoglycoside dimers. Bioorg Med Chem Lett 14:4643–4646

    CAS  Google Scholar 

  24. Arya DP, Willis B (2003) Reaching into the major groove of B-DNA: synthesis and nucleic acid binding of a neomycin-Hoechst 33258 conjugate. J Am Chem Soc 125:12398–12399

    CAS  Google Scholar 

  25. Arya DP (2005) Aminoglycoside-nucleic acid interactions: the case for neomycin. Top Curr Chem 253:149–178

    CAS  Google Scholar 

  26. Arya DP, Coffee RL Jr, Charles I (2001) Neomycin-induced hybrid triplex formation. J Am Chem Soc 123:11093–11094

    CAS  Google Scholar 

  27. Arya DP, Coffee RL Jr (2000) DNA triple helix stabilization by aminoglycoside antibiotics. Bioorg Med Chem Lett 10:1897–1899

    CAS  Google Scholar 

  28. Arya DP (2010) New approaches toward recognition of nucleic acid triple helices. Acc Chem Res 44:134–146

    Google Scholar 

  29. Arya DP, Coffee RL, Willis B, Abramovitch AI (2001) Aminoglycoside−nucleic acid interactions: remarkable stabilization of DNA and RNA triple helices by neomycin. J Am Chem Soc 123:5385–5395

    CAS  Google Scholar 

  30. Arya DP, Xue L, Tennant P (2003) Combining the best in triplex recognition: synthesis and nucleic acid binding of a BQQ−neomycin conjugate. J Am Chem Soc 125:8070–8071

    CAS  Google Scholar 

  31. Xue L, Ranjan N, Arya DP (2011) Synthesis and spectroscopic studies of the (neomycin)-perylene conjugate binding to human telomeric DNA. Biochemistry 50:2838–2849

    CAS  Google Scholar 

  32. Xue L, Charles I, Arya DP (2002) Pyrene–neomycin conjugate: dual recognition of a DNA triple helix. Chem Commun 1:70–71

    Google Scholar 

  33. Ranjan N, Davis E, Xue L, Arya DP (2013) Dual recognition of the human telomeric G-quadruplex by a neomycin–anthraquinone conjugate. Chem Commun 49:5796–5798

    CAS  Google Scholar 

  34. Ranjan N, Arya DP (2013) Targeting C-myc G-quadruplex: dual recognition by aminosugar-bisbenzimidazoles with varying linker lengths. Molecules 18:14228–14240

    Google Scholar 

  35. Watkins D, Ranjan N, Kumar S, Gong C, Arya DP (2013) An assay for human telomeric G-quadruplex DNA binding drugs. Bioorg Med Chem Lett 23:6695–6699

    CAS  Google Scholar 

  36. Shaw NN, Xi H, Arya DP (2008) Molecular recognition of a DNA:RNA hybrid: sub-nanomolar binding by a neomycin–methidium conjugate. Bioorg Med Chem Lett 18:4142–4145

    CAS  Google Scholar 

  37. Shaw NN, Arya DP (2008) Recognition of the unique structure of DNA:RNA hybrids. Biochimie 90:1026–1039

    CAS  Google Scholar 

  38. Hamilton PL, Arya DP (2012) Natural product DNA major groove binders. Nat Prod Rep 29:134–143

    CAS  Google Scholar 

  39. Jiang L, Watkins D, Jin Y, Gong C, King A, Washington AZ, Green KD, Garneau-Tsodikova S, Oyelere AK, Arya DP (2015) Rapid synthesis, RNA binding, and antibacterial screening of a peptidic-aminosugar (PA) library. ACS Chem Biol 10:1278–1289

    CAS  Google Scholar 

  40. Charles I, Xue L, Arya DP (2002) Synthesis of aminoglycoside–DNA conjugates. Bioorg Med Chem Lett 12:1259–1262

    CAS  Google Scholar 

  41. Charles I, Arya DP (2005) Synthesis of neomycin-DNA/peptide nucleic acid conjugates. J Carbohydr Chem 24:145–160

    CAS  Google Scholar 

  42. Charles I, Xi H, Arya DP (2007) Sequence-specific targeting of RNA with an oligonucleotide-neomycin conjugate. Bioconjug Chem 18:160–169

    CAS  Google Scholar 

  43. Ranjan N, Arya DP (2016) Linker dependent intercalation of bisbenzimidazole-aminosugars in an RNA duplex; selectivity in RNA vs. DNA binding. Bioorg Med Chem Lett 26:5989–5994

    CAS  Google Scholar 

  44. Willis B, Arya DP (2014) Recognition of RNA duplex by a neomycin–Hoechst 33258 conjugate. Bioorg Med Chem 22:2327–2332

    CAS  Google Scholar 

  45. King A, Watkins D, Kumar S, Ranjan N, Gong C, Whitlock J, Arya DP (2013) Characterization of ribosomal binding and antibacterial activities using two orthogonal high-throughput screens. Antimicrob Agents Chemother 57:4717–4726. https://doi.org/10.1128/AAC.00671-13

    Article  CAS  Google Scholar 

  46. Jin Y, Watkins D, Degtyareva NN, Green KD, Spano MN, Garneau-Tsodikova S, Arya DP (2016) Arginine-linked neomycin B dimers: synthesis, rRNA binding, and resistance enzyme activity. Medchemcomm 7:164–169. https://doi.org/10.1039/C5MD00427F

    Article  CAS  Google Scholar 

  47. Kukielski C, Maiti K, Bhaduri S, Story S, Arya DP (2018) Rapid solid-phase syntheses of a peptidic-aminoglycoside library. Tetrahedron 74:4418–4428

    CAS  Google Scholar 

  48. Ghosh A, Degyatoreva N, Kukielski C, Story S, Bhaduri S, Maiti K, Nahar S, Ray A, Arya DP, Maiti S (2018) Targeting miRNA by tunable small molecule binders: peptidic aminosugar mediated interference in miR-21 biogenesis reverts epithelial to mesenchymal transition. Med Chem Commun 9:1147–1154

    CAS  Google Scholar 

  49. Watkins D, Norris FA, Kumar S, Arya DP (2013) A fluorescence-based screen for ribosome binding antibiotics. Anal Biochem 434:300–307. https://doi.org/10.1016/j.ab.2012.12.003

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the National Institutes of Health (R42GM097917, AI114114, AI120303) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dev P. Arya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Watkins, D., Maiti, K., Arya, D.P. (2019). Aminoglycoside Functionalization as a Tool for Targeting Nucleic Acids. In: Shank, N. (eds) Non-Natural Nucleic Acids. Methods in Molecular Biology, vol 1973. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9216-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9216-4_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9215-7

  • Online ISBN: 978-1-4939-9216-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics