Skip to main content

Cos-Seq: A High-Throughput Gain-of-Function Screen for Drug Resistance Studies in Leishmania

  • Protocol
  • First Online:
Leishmania

Abstract

Leishmania is still a major cause of mortality and morbidity worldwide. Few efficient drugs are available, and resistance threatens actual treatments. In order to improve knowledge about the mode of action of current drugs and those in development, as well as to understand the mechanisms pertaining to their resistance, we recently described a sensitive and high-throughput method termed Cos-Seq. Here we provide a detailed protocol for every step of the procedure, from library construction to drug selection, cosmid extraction, and next-generation sequencing of extracted cosmids. A section on the bioinformatics of Cos-Seq is also included. Cos-Seq facilitates the identification of gain-of-function resistance mechanisms and drug targets and is a useful tool in resistance and drug development studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ryan KA, Garraway LA, Descoteaux A et al (1993) Isolation of virulence genes directing surface glycosyl-phosphatidylinositol synthesis by functional complementation of Leishmania. Proc Natl Acad Sci U S A 90(18):8609–8613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kundig C, Haimeur A, Legare D et al (1999) Increased transport of pteridines compensates for mutations in the high affinity folate transporter and contributes to methotrexate resistance in the protozoan parasite Leishmania tarentolae. EMBO J 18(9):2342–2351. https://doi.org/10.1093/emboj/18.9.2342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Coelho AC, Beverley SM, Cotrim PC (2003) Functional genetic identification of PRP1, an ABC transporter superfamily member conferring pentamidine resistance in Leishmania major. Mol Biochem Parasitol 130(2):83–90

    Article  CAS  PubMed  Google Scholar 

  4. Cotrim PC, Garrity LK, Beverley SM (1999) Isolation of genes mediating resistance to inhibitors of nucleoside and ergosterol metabolism in Leishmania by overexpression/selection. J Biol Chem 274(53):37723–37730

    Article  CAS  PubMed  Google Scholar 

  5. Kotze AC, Hunt PW, Skuce P et al (2014) Recent advances in candidate-gene and whole-genome approaches to the discovery of anthelmintic resistance markers and the description of drug/receptor interactions. Int J Parasitol Drugs Drug Resist 4(3):164–184. https://doi.org/10.1016/j.ijpddr.2014.07.007

    Article  PubMed  PubMed Central  Google Scholar 

  6. Horn D, Duraisingh MT (2014) Antiparasitic chemotherapy: from genomes to mechanisms. Annu Rev Pharmacol Toxicol 54:71–94. https://doi.org/10.1146/annurev-pharmtox-011613-135915

    Article  CAS  PubMed  Google Scholar 

  7. Downing T, Imamura H, Decuypere S et al (2011) Whole genome sequencing of multiple Leishmania donovani clinical isolates provides insights into population structure and mechanisms of drug resistance. Genome Res 21(12):2143–2156. https://doi.org/10.1101/gr.123430.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Coelho AC, Boisvert S, Mukherjee A et al (2012) Multiple mutations in heterogeneous miltefosine-resistant Leishmania major population as determined by whole genome sequencing. PLoS Negl Trop Dis 6(2):e1512. https://doi.org/10.1371/journal.pntd.0001512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Leprohon P, Fernandez-Prada C, Gazanion E et al (2015) Drug resistance analysis by next generation sequencing in Leishmania. Int J Parasitol Drugs Drug Resist 5(1):26–35. https://doi.org/10.1016/j.ijpddr.2014.09.005

    Article  PubMed  Google Scholar 

  10. Gazanion E, Fernandez-Prada C, Papadopoulou B et al (2016) Cos-Seq for high-throughput identification of drug target and resistance mechanisms in the protozoan parasite Leishmania. Proc Natl Acad Sci U S A 113(21):E3012–E3021. https://doi.org/10.1073/pnas.1520693113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Albert Descoteaux LAG, Ryan KA, Garrity LK, Tuco SJ, Beverly SM (1994) Identification of Genes by Functional Complementation in Protozoan Parasite Leihsmania. Methods Mol Biol 3:23

    Google Scholar 

  12. Fernandez-Prada C, Sharma M, Plourde M et al (2018) High-throughput Cos-Seq screen with intracellular Leishmania infantum for the discovery of novel drug-resistance mechanisms. Int J Parasitol Drugs Drug Resist 8(2):165–173. https://doi.org/10.1016/j.ijpddr.2018.03.004

    Article  PubMed  PubMed Central  Google Scholar 

  13. Haas BJ, Papanicolaou A, Yassour M et al (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8(8):1494–1512. https://doi.org/10.1038/nprot.2013.084

    Article  CAS  PubMed  Google Scholar 

  14. Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323. https://doi.org/10.1186/1471-2105-12-323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang C, Zhang B, Lin LL et al (2017) Evaluation and comparison of computational tools for RNA-seq isoform quantification. BMC Genomics 18(1):583. https://doi.org/10.1186/s12864-017-4002-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zakeri M, Srivastava A, Almodaresi F et al (2017) Improved data-driven likelihood factorizations for transcript abundance estimation. Bioinformatics 33(14):i142–i151. https://doi.org/10.1093/bioinformatics/btx262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Patro R, Duggal G, Love MI et al (2017) Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods 14(4):417–419. https://doi.org/10.1038/nmeth.4197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bray NL, Pimentel H, Melsted P et al (2016) Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol 34(5):525–527. https://doi.org/10.1038/nbt.3519

    Article  CAS  PubMed  Google Scholar 

  19. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140. https://doi.org/10.1093/bioinformatics/btp616

    Article  CAS  PubMed  Google Scholar 

  20. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550. https://doi.org/10.1186/s13059-014-0550-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Law CW, Chen Y, Shi W et al (2014) voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol 15(2):R29. https://doi.org/10.1186/gb-2014-15-2-r29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. White TC, Fase-Fowler F, van Luenen H et al (1988) The H circles of Leishmania tarentolae are a unique amplifiable system of oligomeric DNAs associated with drug resistance. J Biol Chem 263(32):16977–16983

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Ouellette .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Potvin, JE., Leprohon, P., Gazanion, E., Sharma, M., Fernandez-Prada, C., Ouellette, M. (2019). Cos-Seq: A High-Throughput Gain-of-Function Screen for Drug Resistance Studies in Leishmania. In: Clos, J. (eds) Leishmania. Methods in Molecular Biology, vol 1971. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9210-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9210-2_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9209-6

  • Online ISBN: 978-1-4939-9210-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics