Skip to main content

Natural Genetic Transformation: A Direct Route to Easy Insertion of Chimeric Genes into the Pneumococcal Chromosome

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1968))

Abstract

The ability of Streptococcus pneumoniae (the pneumococcus) to transform is particularly convenient for genome engineering. Several protocols relying on sequential positive and negative selection strategies have been described to create directed markerless modifications, including deletions, insertions, or point mutations. Transformation with DNA fragments carrying long flanking homology sequences is also used to generate mutations without selection but it requires high transformability. Here, we present an optimized version of this method. As an example, we construct a strain harboring a translational fusion ftsZ-mTurquoise at the ftsZ locus. We provide instructions to produce a linear DNA fragment containing the chimeric construction and give details of the conditions to obtain optimal pneumococcal transformation efficiencies.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Sung CK, Li H, Claverys JP, Morrison DA (2001) An rpsL cassette, janus, for gene replacement through negative selection in Streptococcus pneumoniae. Appl Environ Microbiol 67:5190–5196. https://doi.org/10.1128/AEM.67.11.5190-5196.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Weng L, Biswas I, Morrison DA (2009) A self-deleting Cre-lox-ermAM cassette, Cheshire, for marker-less gene deletion in Streptococcus pneumoniae. J Microbiol Methods 79:353–357. https://doi.org/10.1016/j.mimet.2009.10.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Iannelli F, Pozzi G (2004) Method for introducing specific and unmarked mutations into the chromosome of Streptococcus pneumoniae. Mol Biotechnol 26:81–86. https://doi.org/10.1385/MB:26:1:81

    Article  CAS  PubMed  Google Scholar 

  4. Junges R, Khan R, Tovpeko Y et al (2017) Markerless genome editing in competent streptococci. Methods Mol Biol 1537:233–247. https://doi.org/10.1007/978-1-4939-6685-1_14

    Article  CAS  PubMed  Google Scholar 

  5. Bergé MJ, Mercy C, Mortier-Barrière I et al (2017) A programmed cell division delay preserves genome integrity during natural genetic transformation in Streptococcus pneumoniae. Nat Commun 8:1621. https://doi.org/10.1038/s41467-017-01716-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mortier-Barrière I, de Saizieu A, Claverys JP, Martin B (1998) Competence-specific induction of recA is required for full recombination proficiency during transformation in Streptococcus pneumoniae. Mol Microbiol 27:159–170

    Article  Google Scholar 

  7. Dagkessamanskaia A, Moscoso M, Hénard V et al (2004) Interconnection of competence, stress and CiaR regulons in Streptococcus pneumoniae: competence triggers stationary phase autolysis of ciaR mutant cells. Mol Microbiol 51:1071–1086

    Article  CAS  Google Scholar 

  8. Prudhomme M, Attaiech L, Sanchez G et al (2006) Antibiotic stress induces genetic transformability in the human pathogen Streptococcus pneumoniae. Science 313:89–92. https://doi.org/10.1126/science.1127912

    Article  CAS  PubMed  Google Scholar 

  9. Lau PCY, Sung CK, Lee JH et al (2002) PCR ligation mutagenesis in transformable streptococci: application and efficiency. J Microbiol Methods 49:193–205

    Article  CAS  Google Scholar 

  10. Tomasz A (1967) Choline in the cell wall of a bacterium: novel type of polymer-linked choline in pneumococcus. Science 157:694–697

    Article  CAS  Google Scholar 

  11. Lefevre JC, Claverys JP, Sicard AM (1979) Donor deoxyribonucleic acid length and marker effect in pneumococcal transformation. J Bacteriol 138:80–86

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Mérola F, Fredj A, Betolngar D-B et al (2014) Newly engineered cyan fluorescent proteins with enhanced performances for live cell FRET imaging. Biotechnol J 9:180–191. https://doi.org/10.1002/biot.201300198

    Article  CAS  PubMed  Google Scholar 

  13. Zacharias DA, Violin JD, Newton AC, Tsien RY (2002) Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296:913–916. https://doi.org/10.1126/science.1068539

    Article  CAS  PubMed  Google Scholar 

  14. Bi EF, Lutkenhaus J (1991) FtsZ ring structure associated with division in Escherichia coli. Nature 354:161–164. https://doi.org/10.1038/354161a0

    Article  CAS  PubMed  Google Scholar 

  15. Jacq M, Adam V, Bourgeois D et al (2015) Remodeling of the Z-ring nanostructure during the Streptococcus pneumoniae cell cycle revealed by Photoactivated localization microscopy. MBio 6:e01108-15. https://doi.org/10.1128/mBio.01108-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bergé MJ, Kamgoué A, Martin B et al (2013) Midcell recruitment of the DNA uptake and virulence nuclease, EndA, for pneumococcal transformation. PLoS Pathog 9:e1003596. https://doi.org/10.1371/journal.ppat.1003596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Morrison DA, Khan R, Junges R et al (2015) Genome editing by natural genetic transformation in Streptococcus mutans. J Microbiol Methods 119:134–141. https://doi.org/10.1016/j.mimet.2015.09.023

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We warmly thank Jean-Pierre Claverys and Bernard Martin for their prominent contribution to development of pneumococcal genetics. We thank Dave Lane and Calum Johnston for critical reading of the manuscript. We also thank all past members of the Claverys lab, past and present members of the Polard lab who participated in development of the method. This work was funded by the Centre National de la Recherche Scientifique, Université Paul Sabatier and Agence Nationale de la Recherche (Grant ANR-13-BSV8-0022 and ANR-17-CE13-0031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Mortier-Barrière .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mortier-Barrière, I., Campo, N., Bergé, M.A., Prudhomme, M., Polard, P. (2019). Natural Genetic Transformation: A Direct Route to Easy Insertion of Chimeric Genes into the Pneumococcal Chromosome. In: Iovino, F. (eds) Streptococcus pneumoniae. Methods in Molecular Biology, vol 1968. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9199-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9199-0_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9198-3

  • Online ISBN: 978-1-4939-9199-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics