Skip to main content

Isothermal Titration Calorimetry Measurements of Riboswitch-Ligand Interactions

  • Protocol
  • First Online:
Microcalorimetry of Biological Molecules

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1964))

Abstract

One of the many ways by which bacteria control gene expression is through cis-acting regulatory mRNA elements called riboswitches. By specifically binding to small molecules or metabolites and pairing the binding event to an RNA structure change, riboswitches link a metabolic input to a transcriptional or translational output. For over a decade, isothermal titration calorimetry (ITC) has been used to investigate how riboswitches interact with small molecules. We present methods for assaying RNA-ligand interactions using ITC and analyzing resulting data to estimate thermodynamic parameters associated with binding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liberman JA, Bogue JT, Jenkins JL, Salim M, Wedekind JE (2014) ITC analysis of ligand binding to preQ(1) riboswitches. Methods Enzymol 549:435–450

    Article  CAS  Google Scholar 

  2. Gilbert SD, Batey RT (2009) Monitoring RNA-ligand interactions using isothermal titration calorimetry. Methods Mol Biol 540:97–114

    Article  CAS  Google Scholar 

  3. Jones CP, Ferré-D’Amaré AR (2015) RNA quaternary structure and global symmetry. Trends Biochem Sci 40:211–220

    Article  CAS  Google Scholar 

  4. Serganov A, Nudler E (2013) A decade of riboswitches. Cell 152:17–24

    Article  CAS  Google Scholar 

  5. Batey RT (2012) Structure and mechanism of purine-binding riboswitches. Q Rev Biophys 45:345–381

    Article  CAS  Google Scholar 

  6. Jones CP, Ferre-D’Amare AR (2017) Long-range interactions in riboswitch control of gene expression. Annu Rev Biophys 46:455–481

    Article  CAS  Google Scholar 

  7. Chauvier A, Picard-Jean F, Berger-Dancause JC, Bastet L, Naghdi MR, Dube A, Turcotte P, Perreault J, Lafontaine DA (2017) Transcriptional pausing at the translation start site operates as a critical checkpoint for riboswitch regulation. Nat Commun 8:13892

    Article  CAS  Google Scholar 

  8. Caron MP, Bastet L, Lussier A, Simoneau-Roy M, Masse E, Lafontaine DA (2012) Dual-acting riboswitch control of translation initiation and mRNA decay. Proc Natl Acad Sci U S A 109:E3444–E3453

    Article  CAS  Google Scholar 

  9. Jones CP, Ferré-D’Amaré AR (2014) Crystal structure of a c-di-AMP riboswitch reveals an internally pseudo-dimeric RNA. EMBO J 33:2692–2703

    Article  CAS  Google Scholar 

  10. Jones CP, Ferré-D’Amaré AR (2015) Recognition of the bacterial alarmone ZMP through long-distance association of two RNA subdomains. Nat Struct Mol Biol 22:679–685

    Article  CAS  Google Scholar 

  11. Wiseman T, Williston S, Brandts JF, Lin LN (1989) Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal Biochem 179:131–137

    Article  CAS  Google Scholar 

  12. Indyk L, Fisher HF (1998) Theoretical aspects of isothermal titration calorimetry. Methods Enzymol 295:350–364

    Article  CAS  Google Scholar 

  13. Zhang J, Jones CP, Ferré-D’Amaré AR (2014) Global analysis of riboswitches by small-angle X-ray scattering and calorimetry. Biochim Biophys Acta 1839:1020–1029

    Article  CAS  Google Scholar 

  14. Keller S, Vargas C, Zhao H, Piszczek G, Brautigam CA, Schuck P (2012) High-precision isothermal titration calorimetry with automated peak-shape analysis. Anal Chem 84:5066–5073

    Article  CAS  Google Scholar 

  15. Zhao H, Piszczek G, Schuck P (2015) SEDPHAT – a platform for global ITC analysis and global multi-method analysis of molecular interactions. Methods 76:137–148

    Article  CAS  Google Scholar 

  16. Tellinghuisen J (2005) Optimizing experimental parameters in isothermal titration calorimetry. J Phys Chem B 109:20027–20035

    Article  CAS  Google Scholar 

  17. Baird NJ, Inglese J, Ferré-D’Amaré AR (2015) Rapid RNA-ligand interaction analysis through high-information content conformational and stability landscapes. Nat Commun 6:8898

    Article  CAS  Google Scholar 

  18. Robertson AD, Murphy KP (1997) Protein structure and the energetics of protein stability. Chem Rev 97:1251–1268

    Article  CAS  Google Scholar 

  19. Tan A, Tanner JJ, Henzl MT (2008) Energetics of OCP1-OCP2 complex formation. Biophys Chem 134:64–71

    Article  CAS  Google Scholar 

  20. Holley RW, Apgar J, Merrill SH (1961) Evidence for the liberation of a nuclease from human fingers. J Biol Chem 236:PC42–PC43

    CAS  PubMed  Google Scholar 

  21. Milligan JF, Groebe DR, Witherell GW, Uhlenbeck OC (1987) Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res 15:8783–8798

    Article  CAS  Google Scholar 

  22. Ferré-D’Amaré AR, Doudna JA (1996) Use of cis- and trans-ribozymes to remove 5′ and 3′ heterogeneities from milligrams of in vitro transcribed RNA. Nucleic Acids Res 24:977–978

    Article  Google Scholar 

  23. Kao C, Zheng M, Rudisser S (1999) A simple and efficient method to reduce nontemplated nucleotide addition at the 3 terminus of RNAs transcribed by T7 RNA polymerase. RNA 5:1268–1272

    Article  CAS  Google Scholar 

  24. Helmling C, Keyhani S, Sochor F, Furtig B, Hengesbach M, Schwalbe H (2015) Rapid NMR screening of RNA secondary structure and binding. J Biomol NMR 63:67–76

    Article  CAS  Google Scholar 

  25. Da Veiga C, Mezher J, Dumas P, Ennifar E (2016) Isothermal titration calorimetry: assisted crystallization of RNA-ligand complexes. Methods Mol Biol 1320:127–143

    Article  Google Scholar 

  26. Turnbull WB, Daranas AH (2003) On the value of c: can low affinity systems be studied by isothermal titration calorimetry? J Am Chem Soc 125:14859–14866

    Article  CAS  Google Scholar 

  27. Tellinghuisen J (2008) Isothermal titration calorimetry at very low c. Anal Biochem 373:395–397

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank S. Bachas, M. Chen, N. Demeshkina, C. Fagan, T. Numata, Lj. Sjekloca, and R. Trachman III for helpful discussions. This work was partially supported by the intramural program of the NHLBI, NIH, and by a Lenfant Biomedical Fellowship to C.P.J.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian R. Ferré-D’Amaré .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jones, C.P., Piszczek, G., Ferré-D’Amaré, A.R. (2019). Isothermal Titration Calorimetry Measurements of Riboswitch-Ligand Interactions. In: Ennifar, E. (eds) Microcalorimetry of Biological Molecules. Methods in Molecular Biology, vol 1964. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9179-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9179-2_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9178-5

  • Online ISBN: 978-1-4939-9179-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics