Skip to main content

Setting Up an Ancient DNA Laboratory

Part of the Methods in Molecular Biology book series (MIMB,volume 1963)

Abstract

Entering into the world of ancient DNA research is nontrivial. Because the DNA in most ancient specimens is degraded to some extent, the potential is high for contamination of ancient samples, ancient DNA extracts, and genomic sequencing libraries prepared from these extracts with non-degraded DNA from the present-day environment. To minimize the risk of contamination in ancient DNA environments, experimental protocols specific to handling ancient specimens, including those that outline the design and layout of laboratory space, have been introduced. Here, we outline challenges associated with working with ancient samples, including providing guidelines for setting up a new ancient DNA laboratory. We also discuss steps that can be taken at the sample collection and preparation stage to minimize the potential for contamination of ancient DNA experiments with exogenous sources of DNA.

Key words

  • Ancient DNA
  • aDNA
  • DNA damage
  • Laboratory setup
  • Contamination
  • Subsampling
  • Sample preparation
  • Guidelines

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-9176-1_1
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-9176-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   149.99
Price excludes VAT (USA)

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Higuchi R, Bowman B, Freiberger M, Ryder OA, Wilson AC (1984) DNA-sequences from the quagga, an extinct member of the horse family. Nature 312(5991):282–284

    CAS  CrossRef  Google Scholar 

  2. Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA et al (1985) Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle-cell Anemia. Science 230(4732):1350–1354

    CAS  CrossRef  Google Scholar 

  3. Paabo S, Higuchi RG, Wilson AC (1989) Ancient DNA and the polymerase chain-reaction—the emerging field of molecular archaeology. J Biol Chem 264(17):9709–9712

    CAS  PubMed  Google Scholar 

  4. Green RE, Krause J, Briggs AW, Maricic T, Stenzel U, Kircher M et al (2010) A draft sequence of the Neandertal genome. Science 328(5979):710–722

    CAS  CrossRef  Google Scholar 

  5. Lazaridis I, Patterson N, Mittnik A, Renaud G, Mallick S, Kirsanow K et al (2014) Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature 513(7518):409–413

    CAS  CrossRef  Google Scholar 

  6. Lipson M, Cheronet O, Mallick S, Rohland N, Oxenham M, Pietrusewsky M et al (2018) Ancient genomes document multiple waves of migration in southeast Asian prehistory. Science 361(6397):92–95

    CAS  CrossRef  Google Scholar 

  7. Edwards CJ, Bollongino R, Scheu A, Chamberlain A, Tresset A, Vigne JD et al (2007) Mitochondrial DNA analysis shows a near eastern Neolithic origin for domestic cattle and no indication of domestication of European aurochs. Proc R Soc B-Biol Sci 274(1616):1377–1385

    CAS  CrossRef  Google Scholar 

  8. Larson G, Liu RR, Zhao XB, Yuan J, Fuller D, Barton L et al (2010) Patterns of east Asian pig domestication, migration, and turnover revealed by modern and ancient DNA. Proc Natl Acad Sci U S A 107(17):7686–7691

    CAS  CrossRef  Google Scholar 

  9. Leonard JA, Wayne RK, Wheeler J, Valadez R, Guillén S, Vilà C (2002) Ancient DNA evidence for Old World origin of New World dogs. Science 298:1613–1616

    CAS  CrossRef  Google Scholar 

  10. Goloubinoff P, Paabo S, Wilson AC (1993) Evolution of maize inferred from sequence diversity of an Adh2 gene segment from archaeological specimens. Proc Natl Acad Sci U S A 90(5):1997–2001

    CAS  CrossRef  Google Scholar 

  11. Gaunitz C, Fages A, Hanghoj K, Albrechtsen A, Khan N, Schubert M et al (2018) Ancient genomes revisit the ancestry of domestic and Przewalski’s horses. Science 360(6384):111–114

    CAS  CrossRef  Google Scholar 

  12. Schubert M, Jonsson H, Chang D, Der Sarkissian C, Ermini L, Ginolhac A et al (2014) Prehistoric genomes reveal the genetic foundation and cost of horse domestication. Proc Natl Acad Sci U S A 111(52):E5661–E5669

    CAS  CrossRef  Google Scholar 

  13. Stiller M, Baryshnikov G, Bocherens H, d'Anglade AG, Hilpert B, Munzel SC et al (2010) Withering away-25,000 years of genetic decline preceded cave bear extinction. Mol Biol Evol 27(5):975–978

    CAS  CrossRef  Google Scholar 

  14. Shapiro B, Drummond AJ, Rambaut A, Wilson MC, Matheus PE, Sher AV et al (2004) Rise and fall of the Beringian steppe bison. Science 306(5701):1561–1565

    CAS  CrossRef  Google Scholar 

  15. Campos PF, Willerslev E, Sher A, Orlando L, Axelsson E, Tikhonov A et al (2010) Ancient DNA analyses exclude humans as the driving force behind late Pleistocene musk ox (Ovibos moschatus) population dynamics. Proc Natl Acad Sci U S A 107(12):5675–5680

    CAS  CrossRef  Google Scholar 

  16. Leonard JA, Wayne RK, Cooper A (2000) Population genetics of ice age brown bears. Proc Natl Acad Sci U S A 97(4):1651–1654

    CAS  CrossRef  Google Scholar 

  17. Pinsky ML, Newsome SD, Dickerson BR, Fang Y, Van Tuinen M, Kennett DJ et al (2010) Dispersal provided resilience to range collapse in a marine mammal: insights from the past to inform conservation biology. Mol Ecol 19(12):2418–2429

    CAS  PubMed  Google Scholar 

  18. Murray GGR, Soares AER, Novak BJ, Schaefer NK, Cahill JA, Baker AJ et al (2017) Natural selection shaped the rise and fall of passenger pigeon genomic diversity. Science 358(6365):951–954

    CAS  CrossRef  Google Scholar 

  19. Shapiro B, Sibthorpe D, Rambaut A, Austin J, Wragg GM, Bininda-Emonds ORP et al (2002) Flight of the dodo. Science 295(5560):1683

    CAS  CrossRef  Google Scholar 

  20. Orlando L, Metcalf JL, Alberdi MT, Telles-Antunes M, Bonjean D, Otte M et al (2009) Revising the recent evolutionary history of equids using ancient DNA. Proc Natl Acad Sci U S A 106(51):21754–21759

    CAS  CrossRef  Google Scholar 

  21. Krause J, Unger T, Nocon A, Malaspinas AS, Kolokotronis SO, Stiller M et al (2008) Mitochondrial genomes reveal an explosive radiation of extinct and extant bears near the Miocene-Pliocene boundary. BMC Evol Biol 8:220

    CrossRef  Google Scholar 

  22. Heintzman PD, Zazula GD, Cahill JA, Reyes AV, MacPhee RD, Shapiro B (2015) Genomic data from extinct north American Camelops revise camel evolutionary history. Mol Biol Evol 32(9):2433–2440

    CAS  CrossRef  Google Scholar 

  23. Meyer M, Palkopoulou E, Baleka S, Stiller M, Penkman KEH, Alt KW et al (2017) Palaeogenomes of Eurasian straight-tusked elephants challenge the current view of elephant evolution. eLife 6:e25413

    CrossRef  Google Scholar 

  24. Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362(6422):709–715

    CAS  CrossRef  Google Scholar 

  25. Pääbo S (1989) Ancient DNA—extraction, characterization, molecular-cloning, and enzymatic amplification. P Natl Acad Sci USA 86(6):1939–1943

    CrossRef  Google Scholar 

  26. Poinar HN, Schwarz C, Qi J, Shapiro B, Macphee RD, Buigues B et al (2006) Metagenomics to paleogenomics: large-scale sequencing of mammoth DNA. Science 311(5759):392–394

    CAS  CrossRef  Google Scholar 

  27. Hoss M, Jaruga P, Zastawny TH, Dizdaroglu M, Paabo S (1996) DNA damage and DNA sequence retrieval from ancient tissues. Nucleic Acids Res 24(7):1304–1307

    CAS  CrossRef  Google Scholar 

  28. Rohland N, Pollack JL, Nagel D, Beauval C, Airvaux J, Paabo S et al (2005) The population history of extant and extinct hyenas. Mol Biol Evol 22(12):2435–2443

    CAS  CrossRef  Google Scholar 

  29. Hofreiter M (2008) Long DNA sequences and large data sets: investigating the quaternary via ancient DNA. Quat Sci Rev 27(27–28):2586–2592

    CrossRef  Google Scholar 

  30. Lindahl T (1993) Recovery of antediluvian DNA. Nature 365(6448):700

    CAS  CrossRef  Google Scholar 

  31. Hofreiter M, Serre D, Poinar HN, Kuch M, Paabo S (2001) Ancient DNA. Nat Rev Genet 2(5):353–359

    CAS  CrossRef  Google Scholar 

  32. Paabo S, Poinar H, Serre D, Jaenicke-Despres V, Hebler J, Rohland N et al (2004) Genetic analyses from ancient DNA. Annu Rev Genet 38:645–679

    CrossRef  Google Scholar 

  33. Willerslev E, Cooper A (2005) Ancient DNA. Proc R Soc B-Biol Sci 272(1558):3–16

    CAS  CrossRef  Google Scholar 

  34. Dabney J, Knapp M, Glocke I, Gansauge MT, Weihmann A, Nickel B et al (2013) Complete mitochondrial genome sequence of a middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc Natl Acad Sci U S A 110(39):15758–15763

    CAS  CrossRef  Google Scholar 

  35. Orlando L, Ginolhac A, Zhang G, Froese D, Albrechtsen A, Stiller M et al (2013) Recalibrating Equus evolution using the genome sequence of an early middle Pleistocene horse. Nature 499(7456):74–78

    CAS  CrossRef  Google Scholar 

  36. Leonard JA, Shanks O, Hofreiter M, Kreuz E, Hodges L, Ream W et al (2007) Animal DNA in PCR reagents plagues ancient DNA research. J Archaeol Sci 34(9):1361–1366

    CrossRef  Google Scholar 

  37. Gilbert MTP, Bandelt HJ, Hofreiter M, Barnes I (2005) Assessing ancient DNA studies. Trends Ecol Evol 20(10):541–544

    CrossRef  Google Scholar 

  38. Handt O, Hoss M, Krings M, Paabo S (1994) Ancient DNA—methodological challenges. Experientia 50(6):524–529

    CAS  CrossRef  Google Scholar 

  39. Cooper A, Poinar HN (2000) Ancient DNA: do it right or not at all. Science 289(5482):1139

    CAS  CrossRef  Google Scholar 

  40. Poinar HN, Hoss M, Bada JL, Paabo S (1996) Amino acid racemization and the preservation of ancient DNA. Science 272(5263):864–866

    CAS  CrossRef  Google Scholar 

  41. Collins MJ, Penkman KE, Rohland N, Shapiro B, Dobberstein RC, Ritz-Timme S et al (2009) Is amino acid racemization a useful tool for screening for ancient DNA in bone? Proc Biol Sci 276(1669):2971–2977

    CAS  CrossRef  Google Scholar 

  42. Handt O, Krings M, Ward RH, Paabo S (1996) The retrieval of ancient human DNA sequences. Am J Hum Genet 59(2):368–376

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Hebsgaard MB, Phillips MJ, Willerslev E (2005) Geologically ancient DNA: fact or artefact? Trends Microbiol 13(5):212–220

    CAS  CrossRef  Google Scholar 

  44. Huson DH, Weber N (2013) Microbial community analysis using MEGAN. Methods Enzymol 531:465–485

    CAS  CrossRef  Google Scholar 

  45. Willerslev E, Hansen AJ, Poinar HN (2004) Isolation of nucleic acids and cultures from fossil ice and permafrost. Trends Ecol Evol 19(3):141–147

    CrossRef  Google Scholar 

  46. Griffiths AJF (2005) Introduction to genetic analysis, 8th edn. W.H. Freeman and Co, New York, p 782. xvi

    Google Scholar 

  47. Kemp BM, Smith DG (2005) Use of bleach to eliminate contaminating DNA from the surface of bones and teeth. Forensic Sci Int 154(1):53–61

    CAS  CrossRef  Google Scholar 

  48. Gilbert MTP, Hansen AJ, Willerslev E, Turner-Walker G, Collins M (2006) Insights into the processes behind the contamination of degraded human teeth and bone samples with exogenous sources of DNA. Int J Osteoarchaeol 16(2):156–164

    CrossRef  Google Scholar 

  49. Sampietro ML, Gilbert MTP, Lao O, Caramelli D, Lari M, Bertranpetit J et al (2006) Tracking down human contamination in ancient human teeth. Mol Biol Evol 23(9):1801–1807

    CAS  CrossRef  Google Scholar 

  50. Salamon M, Tuross N, Arensburg B, Weiner S (2005) Relatively well preserved DNA is present in the crystal aggregates of fossil bones. Proc Natl Acad Sci U S A 102(39):13783–13788

    CAS  CrossRef  Google Scholar 

  51. Gilbert MTP, Menez L, Janaway RC, Tobin DJ, Cooper A, Wilson AS (2006) Resistance of degraded hair shafts to contaminant DNA. Forensic Sci Int 156(2–3):208–212

    CAS  CrossRef  Google Scholar 

  52. Rasmussen M, Li YR, Lindgreen S, Pedersen JS, Albrechtsen A, Moltke I et al (2010) Ancient human genome sequence of an extinct Palaeo-Eskimo. Nature 463(7282):757–762

    CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beth Shapiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Fulton, T.L., Shapiro, B. (2019). Setting Up an Ancient DNA Laboratory. In: Shapiro, B., Barlow, A., Heintzman, P., Hofreiter, M., Paijmans, J., Soares, A. (eds) Ancient DNA. Methods in Molecular Biology, vol 1963. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9176-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9176-1_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9175-4

  • Online ISBN: 978-1-4939-9176-1

  • eBook Packages: Springer Protocols