Predicting RNA Families in Nucleotide Sequences Using StructRNAfinder

  • Vinicius Maracaja-CoutinhoEmail author
  • Raúl Arias-Carrasco
  • Helder I. Nakaya
  • Victor Aliaga-Tobar
Part of the Methods in Molecular Biology book series (MIMB, volume 1962)


Noncoding RNA (ncRNA) research is already a routine in every genomics or transcriptomics initiatives. According to their functions, ncRNAs can be grouped into several different RNA families, which can be represented by conserved primary sequences, secondary structures, or covariance models (CMs). CMs are very sensitive in predicting RNA families in nucleotide sequences and have been widely used in characterizing the repertoire of ncRNAs in organisms from all domains of life. However, the large-scale prediction and annotation of ncRNAs require multiple tools along the process, imposing a great obstacle for researchers with lesser computational or bioinformatics background. StructRNAfinder emerged as an automated tool to avoid these bottlenecks, by performing the automatic identification and complete annotation of regulatory RNA families derived directly from nucleotide sequences. In this chapter, we provide a complete tutorial for both stand-alone and web server versions of StructRNAfinder. This will help users to install the tool and to perform predictions of RNA families in any genome or transcriptome sequences dataset.

Key words

RNA families RNA prediction Noncoding RNAs Covariance models Gene predictions 



VMC was funded by grants from Comisión Nacional de Investigación Científica y Tecnológica (CONICYT): grants FONDECYT (11161020), PAI (PAI79170021), and FONDAP (15130011), Chile. RAC and VAT received a fellowship from Programa de Doctorado en Genómica Integrativa, Vicerrectoría de Investigación, Universidad Mayor, Santiago, Chile. HIN received grants from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Brazil: 2012/19278-6 and 2017/50137-3.


  1. 1.
    Griffiths-Jones S, Moxon S, Marshall M, Khanna A, Eddy SR, Bateman A (2005) Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res 33(Database issue):D121–D124CrossRefGoogle Scholar
  2. 2.
    Mattick JS (2010) The central role of RNA in the genetic programming of complex organisms. An Acad Bras Cienc 82(4):933–939CrossRefGoogle Scholar
  3. 3.
    Böhmdorfer G, Wierzbicki AT (2015) Control of chromatin structure by long noncoding RNA. Trends Cell Biol 25(10):623–632CrossRefGoogle Scholar
  4. 4.
    Zeng Y, Yi R, Cullen BR (2003) MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci U S A 100(17):9779–9784CrossRefGoogle Scholar
  5. 5.
    Leung AKL (2015) The whereabouts of microRNA actions: cytoplasm and beyond. Trends Cell Biol 25(10):601–610CrossRefGoogle Scholar
  6. 6.
    Llonga N, Ylla G, Bau J, Belles X, Piulachs M-D (2018) Diversity of piRNA expression patterns during the ontogeny of the German cockroach. J Exp Zool B Mol Dev Evol 330(5):288–295CrossRefGoogle Scholar
  7. 7.
    Matamala JM, Arias-Carrasco R, Sanchez C, Uhrig M, Bargsted L, Matus S et al (2018) Genome-wide circulating microRNA expression profiling reveals potential biomarkers for amyotrophic lateral sclerosis. Neurobiol Aging 64:123–138CrossRefGoogle Scholar
  8. 8.
    Amaral PP, Leonardi T, Han N, Viré E, Gascoigne DK, Arias-Carrasco R et al (2018) Genomic positional conservation identifies topological anchor point RNAs linked to developmental loci. Genome Biol 19(1):32CrossRefGoogle Scholar
  9. 9.
    Jakobsen TH, Warming AN, Vejborg RM, Moscoso JA, Stegger M, Lorenzen F et al (2017) A broad range quorum sensing inhibitor working through sRNA inhibition. Sci Rep 7(1):9857CrossRefGoogle Scholar
  10. 10.
    Storz G, Vogel J, Wassarman KM (2011) Regulation by small RNAs in bacteria: expanding frontiers. Mol Cell 43(6):880–891CrossRefGoogle Scholar
  11. 11.
    Gottesman S, Storz G (2011) Bacterial small RNA regulators: versatile roles and rapidly evolving variations. Cold Spring Harb Perspect Biol 3(12). Google Scholar
  12. 12.
    Orell A, Tripp V, Aliaga-Tobar V, Albers S-V, Maracaja-Coutinho V, Randau L (2018) A regulatory RNA is involved in RNA duplex formation and biofilm regulation in Sulfolobus acidocaldarius. Nucleic Acids Res 46(9):4794–4806CrossRefGoogle Scholar
  13. 13.
    Nawrocki EP, Kolbe DL, Eddy SR (2009) Infernal 1.0: inference of RNA alignments. Bioinformatics 25(10):1335–1337CrossRefGoogle Scholar
  14. 14.
    Chan PP, Brown JW, Lowe TM (2012) Modeling the Thermoproteaceae RNase P RNA. RNA Biol 9(9):1155–1160CrossRefGoogle Scholar
  15. 15.
    Torres F, Arias-Carrasco R, Caris-Maldonado JC, Barral A, Maracaja-Coutinho V, De Queiroz ATL (2017) LeishDB: a database of coding gene annotation and non-coding RNAs in Leishmania braziliensis. Database 2017.
  16. 16.
    Segovia C, Arias-Carrasco R, Yañez AJ, Maracaja-Coutinho V, Santander J (2018) Core non-coding RNAs of Piscirickettsia salmonis. PLoS One 13(5):e0197206CrossRefGoogle Scholar
  17. 17.
    Arias-Carrasco R, Vásquez-Morán Y, Nakaya HI, Maracaja-Coutinho V (2018) StructRNAfinder: an automated pipeline and web server for RNA families prediction. BMC Bioinformatics. 19(1):55CrossRefGoogle Scholar
  18. 18.
    Nawrocki EP, Eddy SR (2013) Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29(22):2933–2935CrossRefGoogle Scholar
  19. 19.
    Lorenz R, Bernhart SH, Höner Zu Siederdissen C, Tafer H, Flamm C, Stadler PF et al (2011) ViennaRNA Package 2.0. Algorithms Mol Biol 6:26CrossRefGoogle Scholar
  20. 20.
    Nawrocki EP, Burge SW, Bateman A, Daub J, Eberhardt RY, Eddy SR et al (2015) Rfam 12.0: updates to the RNA families database. Nucleic Acids Res 43(Database issue):D130–D137CrossRefGoogle Scholar
  21. 21.
    Ondov BD, Bergman NH, Phillippy AM (2011) Interactive metagenomic visualization in a web browser. BMC Bioinformatics 12:385CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Vinicius Maracaja-Coutinho
    • 1
    • 2
    • 3
    Email author
  • Raúl Arias-Carrasco
    • 1
    • 4
  • Helder I. Nakaya
    • 5
  • Victor Aliaga-Tobar
    • 1
    • 4
  1. 1.Facultad de Ciencias Químicas y Farmacéuticas, Advanced Center for Chronic Diseases—ACCDiSUniversidad de ChileSantiagoChile
  2. 2.Beagle BioinformaticsSantiagoChile
  3. 3.Instituto VandiqueJoão PessoaBrazil
  4. 4.Programa de Doctorado en Genómica Integrativa, Vicerrectoría de InvestigaciónUniversidad MayorSantiagoChile
  5. 5.Department of Clinical and Toxicological Analyses, School of Pharmaceutical SciencesUniversity of São PauloSão PauloBrazil

Personalised recommendations