Barrangou R, May AP (2015) Unraveling the potential of CRISPR-Cas9 for gene therapy. Expert Opin Biol Ther 15(3):311–314. https://doi.org/10.1517/14712598.2015.994501
CAS
CrossRef
PubMed
Google Scholar
Mandal PK, Ferreira LM, Collins R, Meissner TB, Boutwell CL, Friesen M, Vrbanac V, Garrison BS, Stortchevoi A, Bryder D, Musunuru K, Brand H, Tager AM, Allen TM, Talkowski ME, Rossi DJ, Cowan CA (2014) Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9. Cell Stem Cell 15(5):643–652. https://doi.org/10.1016/j.stem.2014.10.004
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Burdette DL, Monroe KM, Sotelo-Troha K, Iwig JS, Eckert B, Hyodo M, Hayakawa Y, Vance RE (2011) STING is a direct innate immune sensor of cyclic di-GMP. Nature 478(7370):515–518. https://doi.org/10.1038/nature10429
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Hornung V, Rothenfusser S, Britsch S, Krug A, Jahrsdorfer B, Giese T, Endres S, Hartmann G (2002) Quantitative expression of toll-like receptor 1–10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J Immunol 168(9):4531–4537
CAS
CrossRef
Google Scholar
Hendel A, Bak RO, Clark JT, Kennedy AB, Ryan DE, Roy S, Steinfeld I, Lunstad BD, Kaiser RJ, Wilkens AB, Bacchetta R, Tsalenko A, Dellinger D, Bruhn L, Porteus MH (2015) Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat Biotechnol 33(9):985–989. https://doi.org/10.1038/nbt.3290
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Kim S, Kim D, Cho SW, Kim J, Kim JS (2014) Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 24(6):1012–1019. https://doi.org/10.1101/gr.171322.113
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Yin H, Song CQ, Suresh S, Wu Q, Walsh S, Rhym LH, Mintzer E, Bolukbasi MF, Zhu LJ, Kauffman K, Mou H, Oberholzer A, Ding J, Kwan SY, Bogorad RL, Zatsepin T, Koteliansky V, Wolfe SA, Xue W, Langer R, Anderson DG (2017) Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing. Nat Biotechnol 35(12):1179–1187. https://doi.org/10.1038/nbt.4005
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Lee K, Mackley VA, Rao A, Chong AT, Dewitt MA, Corn JE, Murthy N (2017) Synthetically modified guide RNA and donor DNA are a versatile platform for CRISPR-Cas9 engineering. elife 6:e25312. https://doi.org/10.7554/eLife.25312
CrossRef
PubMed
PubMed Central
Google Scholar
Wong TK, Neumann E (1982) Electric field mediated gene transfer. Biochem Biophys Res Commun 107(2):584–587
CAS
CrossRef
Google Scholar
Chicaybam L, Sodre AL, Curzio BA, Bonamino MH (2013) An efficient low cost method for gene transfer to T lymphocytes. PLoS One 8(3):e60298. https://doi.org/10.1371/journal.pone.0060298
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Bak RO, Porteus MH (2017) CRISPR-mediated integration of large gene cassettes using AAV donor vectors. Cell Rep 20(3):750–756. https://doi.org/10.1016/j.celrep.2017.06.064
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8(11):2281–2308. https://doi.org/10.1038/nprot.2013.143
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Brinkman EK, Chen T, Amendola M, van Steensel B (2014) Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res 42(22):e168. https://doi.org/10.1093/nar/gku936
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Bak RO, Dever DP, Porteus MH (2018) CRISPR/Cas9 genome editing in human hematopoietic stem cells. Nat Protoc 13(2):358–376. https://doi.org/10.1038/nprot.2017.143
CAS
CrossRef
PubMed
PubMed Central
Google Scholar