Advertisement

Gene Editing in Primary Cells of Cattle and Pig

  • Petra Vochozkova
  • Kilian Simmet
  • Eva-Maria Jemiller
  • Annegret Wünsch
  • Nikolai KlymiukEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1961)

Abstract

Gene Editing by CRISPR/Cas has revolutionized many aspects of biotechnology within a short period of time. This is also true for the genetic manipulation of livestock species, but their specific challenges such as the lack of stem cells, the limited proliferative capacity of primary cells, and the genetic diversity of the pig and cattle populations need consideration when CRISPR/Cas is applied. Here we present guidelines for CRISPRing primary cells in pig and cattle, with a specific focus on testing gRNA in vitro, on generating single cell clones, and on identifying modifications in single cell clones.

Key words

CRISPR/Cas Primary cells gRNA Single cell clones 

References

  1. 1.
    Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823. https://doi.org/10.1126/science.1231143CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826. https://doi.org/10.1126/science.1232033CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821. https://doi.org/10.1126/science.1225829CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bolze A, Mahlaoui N, Byun M, Turner B, Trede N, Ellis SR, Abhyankar A, Itan Y, Patin E, Brebner S, Sackstein P, Puel A, Picard C, Abel L, Quintana-Murci L, Faust SN, Williams AP, Baretto R, Duddridge M, Kini U, Pollard AJ, Gaud C, Frange P, Orbach D, Emile JF, Stephan JL, Sorensen R, Plebani A, Hammarstrom L, Conley ME, Selleri L, Casanova JL (2013) Ribosomal protein SA haploinsufficiency in humans with isolated congenital asplenia. Science 340(6135):976–978. https://doi.org/10.1126/science.1234864CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Lupianez DG, Kraft K, Heinrich V, Krawitz P, Brancati F, Klopocki E, Horn D, Kayserili H, Opitz JM, Laxova R, Santos-Simarro F, Gilbert-Dussardier B, Wittler L, Borschiwer M, Haas SA, Osterwalder M, Franke M, Timmermann B, Hecht J, Spielmann M, Visel A, Mundlos S (2015) Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 161(5):1012–1025. https://doi.org/10.1016/j.cell.2015.04.004CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153(4):910–918. https://doi.org/10.1016/j.cell.2013.04.025CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Wu J, Platero-Luengo A, Sakurai M, Sugawara A, Gil MA, Yamauchi T, Suzuki K, Bogliotti YS, Cuello C, Morales Valencia M, Okumura D, Luo J, Vilarino M, Parrilla I, Soto DA, Martinez CA, Hishida T, Sanchez-Bautista S, Martinez-Martinez ML, Wang H, Nohalez A, Aizawa E, Martinez-Redondo P, Ocampo A, Reddy P, Roca J, Maga EA, Esteban CR, Berggren WT, Nunez Delicado E, Lajara J, Guillen I, Guillen P, Campistol JM, Martinez EA, Ross PJ, Izpisua Belmonte JC (2017) Interspecies Chimerism with mammalian pluripotent stem cells. Cell 168(3):473–486. e415. https://doi.org/10.1016/j.cell.2016.12.036CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Zhu Z, Verma N, Gonzalez F, Shi ZD, Huangfu D (2015) A CRISPR/Cas-mediated selection-free knockin strategy in human embryonic stem cells. Stem Cell Rep 4(6):1103–1111. https://doi.org/10.1016/j.stemcr.2015.04.016CrossRefGoogle Scholar
  9. 9.
    Carlson DF, Lancto CA, Zang B, Kim ES, Walton M, Oldeschulte D, Seabury C, Sonstegard TS, Fahrenkrug SC (2016) Production of hornless dairy cattle from genome-edited cell lines. Nat Biotechnol 34(5):479–481. https://doi.org/10.1038/nbt.3560CrossRefPubMedGoogle Scholar
  10. 10.
    Niu D, Wei HJ, Lin L, George H, Wang T, Lee IH, Zhao HY, Wang Y, Kan Y, Shrock E, Lesha E, Wang G, Luo Y, Qing Y, Jiao D, Zhao H, Zhou X, Wang S, Wei H, Guell M, Church GM, Yang L (2017) Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science 357(6357):1303–1307. https://doi.org/10.1126/science.aan4187CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Nottle MB, Salvaris EJ, Fisicaro N, McIlfatrick S, Vassiliev I, Hawthorne WJ, O'Connell PJ, Brady JL, Lew AM, Cowan PJ (2017) Targeted insertion of an anti-CD2 monoclonal antibody transgene into the GGTA1 locus in pigs using FokI-dCas9. Sci Rep 7(1):8383. https://doi.org/10.1038/s41598-017-09030-6CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Whitworth KM, Rowland RR, Ewen CL, Trible BR, Kerrigan MA, Cino-Ozuna AG, Samuel MS, Lightner JE, McLaren DG, Mileham AJ, Wells KD, Prather RS (2016) Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus. Nat Biotechnol 34(1):20–22. https://doi.org/10.1038/nbt.3434CrossRefPubMedGoogle Scholar
  13. 13.
    Bahr A, Kaser T, Kemter E, Gerner W, Kurome M, Baars W, Herbach N, Witter K, Wunsch A, Talker SC, Kessler B, Nagashima H, Saalmuller A, Schwinzer R, Wolf E, Klymiuk N (2016) Ubiquitous LEA29Y expression blocks T cell co-stimulation but permits sexual reproduction in genetically modified pigs. PLoS One 11(5):e0155676. https://doi.org/10.1371/journal.pone.0155676CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Klymiuk N, Blutke A, Graf A, Krause S, Burkhardt K, Wuensch A, Krebs S, Kessler B, Zakhartchenko V, Kurome M, Kemter E, Nagashima H, Schoser B, Herbach N, Blum H, Wanke R, Aartsma-Rus A, Thirion C, Lochmuller H, Walter MC, Wolf E (2013) Dystrophin-deficient pigs provide new insights into the hierarchy of physiological derangements of dystrophic muscle. Hum Mol Genet 22(21):4368–4382. https://doi.org/10.1093/hmg/ddt287CrossRefPubMedGoogle Scholar
  15. 15.
    Klymiuk N, Bocker W, Schonitzer V, Bahr A, Radic T, Frohlich T, Wunsch A, Kessler B, Kurome M, Schilling E, Herbach N, Wanke R, Nagashima H, Mutschler W, Arnold GJ, Schwinzer R, Schieker M, Wolf E (2012) First inducible transgene expression in porcine large animal models. FASEB J 26(3):1086–1099. https://doi.org/10.1096/fj.11-185041CrossRefPubMedGoogle Scholar
  16. 16.
    Klymiuk N, Mundhenk L, Kraehe K, Wuensch A, Plog S, Emrich D, Langenmayer MC, Stehr M, Holzinger A, Kroner C, Richter A, Kessler B, Kurome M, Eddicks M, Nagashima H, Heinritzi K, Gruber AD, Wolf E (2012) Sequential targeting of CFTR by BAC vectors generates a novel pig model of cystic fibrosis. J Mol Med (Berl) 90(5):597–608. https://doi.org/10.1007/s00109-011-0839-yCrossRefGoogle Scholar
  17. 17.
    Klymiuk N, van Buerck L, Bahr A, Offers M, Kessler B, Wuensch A, Kurome M, Thormann M, Lochner K, Nagashima H, Herbach N, Wanke R, Seissler J, Wolf E (2012) Xenografted islet cell clusters from INSLEA29Y transgenic pigs rescue diabetes and prevent immune rejection in humanized mice. Diabetes 61(6):1527–1532. https://doi.org/10.2337/db11-1325CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Simmet K, Reichenbach M, Reichenbach HD, Wolf E (2015) Phytohemagglutinin facilitates the aggregation of blastomere pairs from Day 5 donor embryos with Day 4 host embryos for chimeric bovine embryo multiplication. Theriogenology 84(9):1603–1610. https://doi.org/10.1016/j.theriogenology.2015.08.012CrossRefPubMedGoogle Scholar
  19. 19.
    Wuensch A, Baehr A, Bongoni AK, Kemter E, Blutke A, Baars W, Haertle S, Zakhartchenko V, Kurome M, Kessler B, Faber C, Abicht JM, Reichart B, Wanke R, Schwinzer R, Nagashima H, Rieben R, Ayares D, Wolf E, Klymiuk N (2014) Regulatory sequences of the porcine THBD gene facilitate endothelial-specific expression of bioactive human thrombomodulin in single- and multitransgenic pigs. Transplantation 97(2):138–147. https://doi.org/10.1097/TP.0b013e3182a95cbcCrossRefPubMedGoogle Scholar
  20. 20.
    Klymiuk N, Fezert P, Wunsch A, Kurome M, Kessler B, Wolf E (2014) Homologous recombination contributes to the repair of zinc-finger-nuclease induced double strand breaks in pig primary cells and facilitates recombination with exogenous DNA. J Biotechnol 177:74–81. https://doi.org/10.1016/j.jbiotec.2014.01.018CrossRefPubMedGoogle Scholar
  21. 21.
    Simmet K, Zakhartchenko V, Philippou-Massier J, Blum H, Klymiuk N, Wolf E (2018) OCT4/POU5F1 is required for NANOG expression in bovine blastocysts. Proc Natl Acad Sci U S A 115(11):2770–2775. https://doi.org/10.1073/pnas.1718833115CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Bouabe H, Okkenhaug K (2013) A protocol for construction of gene targeting vectors and generation of homologous recombinant embryonic stem cells. Methods Mol Biol 1064:337–354. https://doi.org/10.1007/978-1-62703-601-6_24CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Bouabe H, Okkenhaug K (2013) Gene targeting in mice: a review. Methods Mol Biol 1064:315–336. https://doi.org/10.1007/978-1-62703-601-6_23CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8(11):2281–2308. https://doi.org/10.1038/nprot.2013.143CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Labun K, Montague TG, Gagnon JA, Thyme SB, Valen E (2016) CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering. Nucleic Acids Res 44(W1):W272–W276. https://doi.org/10.1093/nar/gkw398CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Heigwer F, Kerr G, Boutros M (2014) E-CRISP: fast CRISPR target site identification. Nat Methods 11(2):122–123. https://doi.org/10.1038/nmeth.2812CrossRefPubMedGoogle Scholar
  27. 27.
    Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O, Cradick TJ, Marraffini LA, Bao G, Zhang F (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31(9):827–832. https://doi.org/10.1038/nbt.2647CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Anders C, Niewoehner O, Duerst A, Jinek M (2014) Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513(7519):569–573. https://doi.org/10.1038/nature13579CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Richter A, Kurome M, Kessler B, Zakhartchenko V, Klymiuk N, Nagashima H, Wolf E, Wuensch A (2012) Potential of primary kidney cells for somatic cell nuclear transfer mediated transgenesis in pig. BMC Biotechnol 12:84. https://doi.org/10.1186/1472-6750-12-84CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Brinkman EK, Chen T, Amendola M, van Steensel B (2014) Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res 42(22):e168. https://doi.org/10.1093/nar/gku936CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Kurome M, Kessler B, Wuensch A, Nagashima H, Wolf E (2015) Nuclear transfer and transgenesis in the pig. Methods Mol Biol 1222:37–59. https://doi.org/10.1007/978-1-4939-1594-1_4CrossRefPubMedGoogle Scholar
  32. 32.
    Bustin S, Huggett J (2017) qPCR primer design revisited. Biomol Detect Quantif 14:19–28. https://doi.org/10.1016/j.bdq.2017.11.001CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Bustin SA, Benes V, Nolan T, Pfaffl MW (2005) Quantitative real-time RT-PCR--a perspective. J Mol Endocrinol 34(3):597–601. https://doi.org/10.1677/jme.1.01755CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Petra Vochozkova
    • 1
  • Kilian Simmet
    • 1
  • Eva-Maria Jemiller
    • 1
  • Annegret Wünsch
    • 1
  • Nikolai Klymiuk
    • 1
    Email author
  1. 1.Institute for Molecular Animal Breeding and BiotechnologyLMU MunichMunichGermany

Personalised recommendations