Skip to main content

CRISPR/Cas9-Mediated Gene Tagging: A Step-by-Step Protocol

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1961))

Abstract

CRISPR/Cas9 provides a simple and powerful tool for modifying almost any DNA of interest. One promising application of the CRISPR/Cas9 system is for tagging genes with a fluorescence marker or tag peptides. For such a purpose, FLAG, HIS, and HA tags or fluorescence proteins (EGFP, BFP, RFP, etc.) have been broadly used to tag endogenous genes of interest. The advantages of generating fluorescence tagging proteins are to provide easy tracing of the subcellular locations, real-time monitoring the expression and dynamics of the protein in different conditions, which cannot be achieved using traditional immunostaining or biochemistry assays. However, the generation of such a gene-tagged cell line could be technically challenging. In this chapter, we demonstrate the generation of tagging the porcine GAPDH (pGAPDH) gene GFP by CRISPR/Cas9-based homology-directed repair.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Plump AS et al (1992) Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell 71(2):343–353

    Article  CAS  Google Scholar 

  2. Nandi AK et al (1988) Regulated expression of genes inserted at the human chromosomal beta-globin locus by homologous recombination. Proc Natl Acad Sci U S A 85(11):3845–3849

    Article  CAS  Google Scholar 

  3. De Lozanne A, Spudich JA (1987) Disruption of the Dictyostelium myosin heavy chain gene by homologous recombination. Science 236(4805):1086–1091

    Article  Google Scholar 

  4. Li ZW et al (1996) Generation of mice with a 200-kb amyloid precursor protein gene deletion by Cre recombinase-mediated site-specific recombination in embryonic stem cells. Proc Natl Acad Sci U S A 93(12):6158–6162

    Article  CAS  Google Scholar 

  5. Brightbill HD et al (2010) Antibodies specific for a segment of human membrane IgE deplete IgE-producing B cells in humanized mice. J Clin Invest 120(6):2218–2229

    Article  CAS  Google Scholar 

  6. Kuwayama H (2012) Enhancement of homologous recombination efficiency by homologous oligonucleotides. In: Gowder SJT (ed) Cell interaction. IntechOpen, London

    Google Scholar 

  7. Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157(6):1262–1278

    Article  CAS  Google Scholar 

  8. Cong L et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823

    Article  CAS  Google Scholar 

  9. Zhou Y et al (2016) Enhanced genome editing in mammalian cells with a modified dual-fluorescent surrogate system. Cell Mol Life Sci 73(13):2543–2563

    Article  CAS  Google Scholar 

  10. Dickinson DJ et al (2013) Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nat Methods 10(10):1028–1034

    Article  CAS  Google Scholar 

  11. Yang H et al (2013) One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154(6):1370–1379

    Article  CAS  Google Scholar 

  12. Szymczak AL et al (2004) Correction of multi-gene deficiency in vivo using a single ‘self-cleaving’ 2A peptide-based retroviral vector. Nat Biotechnol 22(5):589–594

    Article  CAS  Google Scholar 

  13. Ran FA et al (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8(11):2281–2308

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work is partially supported by Guangdong Provincial Key Laboratory of Genome Read and Write (No. 2017B030301011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Xiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Xiang, X. et al. (2019). CRISPR/Cas9-Mediated Gene Tagging: A Step-by-Step Protocol. In: Luo, Y. (eds) CRISPR Gene Editing. Methods in Molecular Biology, vol 1961. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9170-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9170-9_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9169-3

  • Online ISBN: 978-1-4939-9170-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics