Cooper GM, Shendure J (2011) Needles in stacks of needles: finding disease-causal variants in a wealth of genomic data. Nat Rev Genet 12:628–640
CAS
CrossRef
Google Scholar
Zhang F, Lupski JR (2015) Non-coding genetic variants in human disease. Hum Mol Genet 24:R102–R110
CAS
CrossRef
Google Scholar
Trounson A, DeWitt ND (2016) Pluripotent stem cells progressing to the clinic. Nat Rev Mol Cell Biol 17:194–200
CAS
CrossRef
Google Scholar
Avior Y, Sagi I, Benvenisty N (2016) Pluripotent stem cells in disease modelling and drug discovery. Nat Rev Mol Cell Biol 17:170–182
CAS
CrossRef
Google Scholar
Murry CE, Keller G (2008) Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132:661–680
CAS
CrossRef
Google Scholar
Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823
CAS
CrossRef
Google Scholar
Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826
CAS
CrossRef
Google Scholar
Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821
CAS
CrossRef
Google Scholar
Wright AV, Nuñez JK, Doudna JA (2016) Biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineering. Cell 164:29–44
CAS
CrossRef
Google Scholar
Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278
CAS
CrossRef
Google Scholar
González F, Zhu Z, Shi Z-D et al (2014) An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells. Cell Stem Cell 15:215–226
CrossRef
Google Scholar
Chen Y, Cao J, Xiong M et al (2015) Engineering human stem cell lines with inducible gene knockout using CRISPR/Cas9. Cell Stem Cell 17:233–244
CrossRef
Google Scholar
Mandegar MA, Huebsch N, Frolov EB et al (2016) CRISPR interference efficiently induces specific and reversible gene silencing in human iPSCs. Cell Stem Cell 18:541–553
CAS
CrossRef
Google Scholar
Haenebalcke L, Goossens S, Naessens M et al (2013) Efficient ROSA26-based conditional and/or inducible transgenesis using RMCE-compatible F1 hybrid mouse embryonic stem cells. Stem Cell Rev 9:774–785
CAS
CrossRef
Google Scholar
Ordovas L, Boon R, Pistoni M et al (2015) Efficient recombinase-mediated cassette exchange in hPSCs to study the hepatocyte lineage reveals AAVS1 locus-mediated transgene inhibition. Stem Cell Rep 5:918–931
CAS
CrossRef
Google Scholar
Bertero A, Pawlowski M, Ortmann D et al (2016) Optimized inducible shRNA and CRISPR/Cas9 platforms for in vitro studies of human development using hPSCs. Development 143:4405–4418
CAS
CrossRef
Google Scholar
Fogarty NME, McCarthy A, Snijders KE et al (2017) Genome editing reveals a role for OCT4 in human embryogenesis. Nature 550(7674):67–73
CAS
CrossRef
Google Scholar
Brummelkamp TR, Bernards R, Agami R (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550–553
CAS
CrossRef
Google Scholar
Smith JR, Maguire S, Davis LA et al (2008) Robust, persistent transgene expression in human embryonic stem cells is achieved with AAVS1-targeted integration. Stem Cells 26:496–504
CAS
CrossRef
Google Scholar
Hockemeyer D, Soldner F, Beard C et al (2009) Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol 27:851–857
CAS
CrossRef
Google Scholar
DeKelver RC, Choi VM, Moehle EA et al (2010) Functional genomics, proteomics, and regulatory DNA analysis in isogenic settings using zinc finger nuclease-driven transgenesis into a safe harbor locus in the human genome. Genome Res 20:1133–1142
CAS
CrossRef
Google Scholar
Pawlowski M, Ortmann D, Bertero A et al (2017) Inducible and deterministic forward programming of human pluripotent stem cells into neurons, skeletal myocytes, and oligodendrocytes. Stem Cell Rep 8:803–812
CAS
CrossRef
Google Scholar
Gaj T, Gersbach CA, Barbas CF (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405
CAS
CrossRef
Google Scholar
Bertero A, Yiangou L, Brown S et al (2018) Conditional manipulation of gene function in human cells with optimized inducible shRNA. Curr Protoc Stem Cell Biol 44:5C.4.1–5C.4.49
CrossRef
Google Scholar
Santos DP, Kiskinis E, Eggan K et al (2016) Comprehensive protocols for CRISPR/Cas9-based gene editing in human pluripotent stem cells. Curr Protoc Stem Cell Biol 38:5B.6.1–5B.6.60
CrossRef
Google Scholar
Fan H, Robetorye RS (2010) Real-time quantitative reverse transcriptase polymerase chain reaction. Methods Mol Biol 630:199–213
CAS
CrossRef
Google Scholar
Wang L, Gaigalas AK, Yan M (2011) Quantitative fluorescence measurements with multicolor flow cytometry. Methods Mol Biol 699:53–65
CAS
CrossRef
Google Scholar
Willingham MC (2010) Fluorescence labeling of intracellular antigens of attached or suspended tissue-culture cells. Methods Mol Biol 588:153–164
CAS
CrossRef
Google Scholar
Willingham MC (2010) Fluorescence labeling of surface antigens of attached or suspended tissue-culture cells. Methods Mol Biol 588:143–151
CAS
CrossRef
Google Scholar
Komatsu S (2015) Western blotting using PVDF membranes and its downstream applications. Methods Mol Biol 1312:227–236
CrossRef
Google Scholar
Tsai SQ, Joung JK (2016) Defining and improving the genome-wide specificities of CRISPR–Cas9 nucleases. Nat Rev Genet 17:300–312
CAS
CrossRef
Google Scholar
Mohr SE, Hu Y, Ewen-Campen B et al (2016) CRISPR guide RNA design for research applications. FEBS J 283:3232–3238
CAS
CrossRef
Google Scholar
Graham DB, Root DE (2015) Resources for the design of CRISPR gene editing experiments. Genome Biol 16:260
CrossRef
Google Scholar
Perez AR, Pritykin Y, Vidigal JA et al (2017) GuideScan software for improved single and paired CRISPR guide RNA design. Nat Biotechnol 35:347–349
CAS
CrossRef
Google Scholar
MacPherson CR, Scherf A (2015) Flexible guide-RNA design for CRISPR applications using Protospacer Workbench. Nat Biotechnol 33:805–806
CAS
CrossRef
Google Scholar
Bloom K, Ely A, Arbuthnot P (2017) A T7 endonuclease I assay to detect talen-mediated targeted mutation of HBV cccDNA. Methods Mol Biol 1540:85–95
CAS
CrossRef
Google Scholar
Ranganathan V, Wahlin K, Maruotti J, Zack DJ (2014) Expansion of the CRISPR-Cas9 genome targeting space through the use of H1 promoter-expressed guide RNAs. Nat Commun 5:4516
CAS
CrossRef
Google Scholar
Ma H, Wu Y, Dang Y et al (2014) Pol III promoters to express small RNAs: delineation of transcription initiation. Mol Ther 3:e161
CAS
Google Scholar
Watanabe K, Ueno M, Kamiya D et al (2007) A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol 25:681–686
CAS
CrossRef
Google Scholar
Henriksen JR, Løkke C, Hammerø M et al (2007) Comparison of RNAi efficiency mediated by tetracycline-responsive H1 and U6 promoter variants in mammalian cell lines. Nucleic Acids Res 35:e67
CrossRef
Google Scholar
Slaymaker IM, Gao L, Zetsche B et al (2015) Rationally engineered Cas9 nucleases with improved specificity. Science 351:84–88
CrossRef
Google Scholar
Kleinstiver BP, Pattanayak V, Prew MS et al (2016) High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529:490–495
CAS
CrossRef
Google Scholar
Chatzispyrou IA, Held NM, Mouchiroud L et al (2015) Tetracycline antibiotics impair mitochondrial function and its experimental use confounds research. Cancer Res 75:4446–4449
CAS
CrossRef
Google Scholar
Moullan N, Mouchiroud L, Wang X et al (2015) Tetracyclines disturb mitochondrial function across eukaryotic models: a call for caution in biomedical research. Cell Rep 10:1681–1691
CAS
CrossRef
Google Scholar