Advertisement

Derivation of Macrophages from Mouse Bone Marrow

  • Beckley K. DavisEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1960)

Abstract

Macrophages are cellular components of the immune system that are essential for responding to pathogens, initiating inflammation and maintaining tissue homeostasis. Isolation, culture, and functional characterization of bone marrow-derived macrophages from mice are exceptionally powerful in vitro techniques used to examine aspects of macrophage biology, including effector functions, such as phagocytosis, cytokine secretion, oxidative burst, migration, and antigen processing and presentation. These studies can be carried out using wild-type, gene-ablated, and/or transgenic mice. The quantity, purity, and ease of culture of these cells enhance their utility for primary cell cultures to understand macrophage biology. Mouse macrophages have become a cognate animal model for the study of human macrophage biology and disease. This chapter outlines protocols used to generate, polarize, quantitate, and functionally evaluate macrophages derived from bone marrow precursor cells.

Keywords

Bone marrow Macrophage Inflammation Cytokine Phagocytosis ELISA Flow cytometry 

References

  1. 1.
    Varol C, Mildner A, Jung S (2015) Macrophages: development and tissue specialization. Annu Rev Immunol 33:643–675CrossRefGoogle Scholar
  2. 2.
    Karp CL, Murray PJ (2012) Non-canonical alternatives: what a macrophage is 4. J Exp Med 209:427–431CrossRefGoogle Scholar
  3. 3.
    Mege JL, Mehraj V, Capo C (2011) Macrophage polarization and bacterial infections. Curr Opin Infect Dis 24:230–234CrossRefGoogle Scholar
  4. 4.
    Bloemen K, Verstraelen S, Van Den Heuvel R et al (2007) The allergic cascade: review of the most important molecules in the asthmatic lung. Immunol Lett 113:6–18CrossRefGoogle Scholar
  5. 5.
    Chawla A, Nguyen KD, Goh YP (2011) Macrophage-mediated inflammation in metabolic disease. Nat Rev Immunol 11:738–749CrossRefGoogle Scholar
  6. 6.
    Biswas SK, Chittezhath M, Shalova IN et al (2012) Macrophage polarization and plasticity in health and disease. Immunol Res 53:11–24CrossRefGoogle Scholar
  7. 7.
    Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122:787–795CrossRefGoogle Scholar
  8. 8.
    DeFalco T, Potter SJ, Williams AV et al (2015) Macrophages contribute to the spermatogonial niche in the adult testis. Cell Rep 12:1107–1119CrossRefGoogle Scholar
  9. 9.
    Hulsmans M, Clauss S, Xiao L et al (2017) Macrophages facilitate electrical conduction in the heart. Cell 169:510–22 e20CrossRefGoogle Scholar
  10. 10.
    McArdle S, Mikulski Z, Ley K (2016) Live cell imaging to understand monocyte, macrophage, and dendritic cell function in atherosclerosis. J Exp Med 213:1117–1131CrossRefGoogle Scholar
  11. 11.
    Ginhoux F, Jung S (2014) Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol 14:392–404CrossRefGoogle Scholar
  12. 12.
    Geissmann F, Manz MG, Jung S et al (2010) Development of monocytes, macrophages, and dendritic cells. Science 327:656–661CrossRefGoogle Scholar
  13. 13.
    Yona S, Kim KW, Wolf Y et al (2013) Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38:79–91CrossRefGoogle Scholar
  14. 14.
    Mildner A, Yona S, Jung S (2013) A close encounter of the third kind monocyte-derived cells. Adv Immunol 120:69–103CrossRefGoogle Scholar
  15. 15.
    Martinez FO, Gordon S (2014) The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 6:13CrossRefGoogle Scholar
  16. 16.
    Gordon S (2007) The macrophage: past, present and future. Eur J Immunol 37(Suppl 1):S9–S17CrossRefGoogle Scholar
  17. 17.
    Gordon S, Martinez FO (2010) Alternative activation of macrophages: mechanism and functions. Immunity 32:593–604CrossRefGoogle Scholar
  18. 18.
    McElvania Tekippe E, Allen IC, Hulseberg PD et al (2010) Granuloma formation and host defense in chronic mycobacterium tuberculosis infection requires PYCARD/ASC but not NLRP3 or caspase-1. PLoS One 5:e12320CrossRefGoogle Scholar
  19. 19.
    Wen H, Lei Y, Eun SY et al (2010) Plexin-A4-semaphorin 3A signaling is required for toll-like receptor- and sepsis-induced cytokine storm. J Exp Med 207:2943–2957CrossRefGoogle Scholar
  20. 20.
    Mesquita FS, Thomas M, Sachse M et al (2012) The salmonella deubiquitinase SseL inhibits selective autophagy of cytosolic aggregates. PLoS Pathog 8:e1002743CrossRefGoogle Scholar
  21. 21.
    Sharif O, Bolshakov VN, Raines S et al (2007) Transcriptional profiling of the LPS induced NF-kappaB response in macrophages. BMC Immunol 8:1CrossRefGoogle Scholar
  22. 22.
    Selinummi J, Ruusuvuori P, Podolsky I et al (2009) Bright field microscopy as an alternative to whole cell fluorescence in automated analysis of macrophage images. PLoS One 4:e7497CrossRefGoogle Scholar
  23. 23.
    Edwards JP, Zhang X, Frauwirth KA et al (2006) Biochemical and functional characterization of three activated macrophage populations. J Leukoc Biol 80:1298–1307CrossRefGoogle Scholar
  24. 24.
    Wynn TA, Barron L, Thompson RW et al (2011) Quantitative assessment of macrophage functions in repair and fibrosis. Curr Protoc Immunol. Chapter 14: Unit14 22Google Scholar
  25. 25.
    Allen IC, Wilson JE, Schneider M et al (2012) NLRP12 suppresses colon inflammation and tumorigenesis through the negative regulation of noncanonical NF-kappaB signaling. Immunity 36:742–754CrossRefGoogle Scholar
  26. 26.
    Allen IC, TeKippe EM, Woodford RM et al (2010) The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer. J Exp Med 207:1045–1056CrossRefGoogle Scholar
  27. 27.
    Allen IC, Moore CB, Schneider M et al (2011) NLRX1 protein attenuates inflammatory responses to infection by interfering with the RIG-I-MAVS and TRAF6-NF-kappaB signaling pathways. Immunity 34:854–865CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of BiologyFranklin & Marshall CollegeLancasterUSA

Personalised recommendations