Advertisement

Toxoplasma gondii as a Model of In Vivo Host-Parasite Interactions

  • Sheryl Coutermarsh-OttEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1960)

Abstract

Toxoplasma gondii is an intracellular, apicomplexan parasite of great importance in both human and animal health. Current research has identified a variety of important and necessary factors specific to the parasite that enable it to infect and persist in a wide array of mammalian hosts. However, in order to continue to build our understanding of T. gondii pathogenesis, the relevance of these parasite characteristics needs continued investigation in animal models. In the following chapter, we present a model of intraperitoneal infection of C57BL/6 mice with T. gondii tachyzoites that, in C57BL/6 mice, elicits a strong acute immune response. Moreover, we present methods for sampling and analyzing peritoneal and bronchoalveolar lavage fluids in order to assess localized and systemic immune reactions to the parasite.

Keywords

Mouse models Toxoplasma gondii Toxoplasmosis Lung harvest Cyst Tachyzoite Inflammation Peritoneal lavage Bronchoalveolar lavage Cytokine Immune system 

References

  1. 1.
    Meers S, Lagrou K, Theunissen K et al (2010) Myeloablative conditioning predisposes patients for toxoplasma gondii reactivation after allogeneic stem cell transplantation. Clin Infect Dis 50(8):1127–1134.  https://doi.org/10.1086/651266CrossRefPubMedGoogle Scholar
  2. 2.
    Aliberti J (2005) Host persistence: exploitation of anti-inflammatory pathways by toxoplasma gondii. Nat Rev Immunol 5(2):162–170.  https://doi.org/10.1038/nri1547CrossRefPubMedGoogle Scholar
  3. 3.
    Perez-Mazliah D, Langhorne J (2014) CD4 T-cell subsets in malaria: TH1/TH2 revisited. Front Immunol 5:671.  https://doi.org/10.3389/fimmu.2014.00671CrossRefPubMedGoogle Scholar
  4. 4.
    Leopold Wager CM, Hole CR, Wozniak KL et al (2014) STAT1 signaling is essential for protection against Cryptococcus neoformans infection in mice. J Immunol 193(8):4060–4071.  https://doi.org/10.4049/jimmunol.1400318CrossRefPubMedGoogle Scholar
  5. 5.
    Hong YH, Lillehoj HS, Lee SH et al (2006) Analysis of chicken cytokine and chemokine gene expression following Eimeria acervulina and Eimeria tenella infections. Vet Immunol Immunopathol 114(3-4):209–223.  https://doi.org/10.1016/j.vetimm.2006.07.007CrossRefPubMedGoogle Scholar
  6. 6.
    Pfefferkorn ER, Kasper LH (1983) Toxoplasma gondii: genetic crosses reveal phenotypic suppression of hydroxyurea resistance by fluorodeoxyuridine resistance. Exp Parasitol 55(2):207–218CrossRefGoogle Scholar
  7. 7.
    Hunter CA, Sibley LD (2012) Modulation of innate immunity by toxoplasma gondii virulence effectors. Nat Rev Microbiol 10(11):766–778.  https://doi.org/10.1038/nrmicro2858CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Scanga CA, Aliberti J, Jankovic D et al (2002) Cutting edge: MyD88 is required for resistance to toxoplasma gondii infection and regulates parasite-induced IL-12 production by dendritic cells. J Immunol 168(12):5997–6001CrossRefGoogle Scholar
  9. 9.
    Mun HS, Aosai F, Norose K et al (2003) TLR2 as an essential molecule for protective immunity against toxoplasma gondii infection. Int Immunol 15(9):1081–1087CrossRefGoogle Scholar
  10. 10.
    Gorfu G, Cirelli KM, Melo MB et al (2014) Dual role for inflammasome sensors NLRP1 and NLRP3 in murine resistance to toxoplasma gondii. mBio 5(1).  https://doi.org/10.1128/mBio.01117-13
  11. 11.
    Coutermarsh-Ott SL, Doran JT, Campbell C et al (2016) Caspase-11 modulates inflammation and attenuates toxoplasma gondii pathogenesis. Mediat Inflamm 2016:9848263.  https://doi.org/10.1155/2016/9848263CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary MedicineVirginia TechBlacksburgUSA

Personalised recommendations