Skip to main content

Microfluidic Platform to Quantify Neutrophil Migratory Decision-Making

  • Protocol
  • First Online:
Mouse Models of Innate Immunity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1960))

Abstract

Neutrophils are the most abundant leukocytes in blood, serving as the first line of host defense in tissue damage and infections. Upon activation by chemokines released from pathogens or injured tissues, neutrophils migrate through complex tissue microenvironments toward sites of infections along the chemokine gradients, in a process named chemotaxis. However, current methods for measuring neutrophil chemotaxis require large volumes of blood and are often bulk, endpoint measurements. To address the need for rapid and robust assays, we engineered a novel dual gradient microfluidic platform that precisely quantifies neutrophil migratory decision-making with high temporal resolution. Here, we present a protocol to measure neutrophil migratory phenotypes (velocity, directionality) with single-cell resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu J, Wu X, Lin F (2013) Recent developments in microfluidics-based chemotaxis studies. Lab Chip 13(13):2484–2499. https://doi.org/10.1039/c3lc50415h

    Article  CAS  PubMed  Google Scholar 

  2. Irimia D, Ellett F (2016) Big insights from small volumes: deciphering complex leukocyte behaviors using microfluidics. J Leukoc Biol 100(2):291–304. https://doi.org/10.1189/jlb.5RU0216-056R

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jones CN, Hoang AN, Martel JM et al (2016) Microfluidic assay for precise measurements of mouse, rat, and human neutrophil chemotaxis in whole-blood droplets. J Leukoc Biol 100(1):241–247. https://doi.org/10.1189/jlb.5TA0715-310RR

    Article  CAS  PubMed  Google Scholar 

  4. Hamza B, Irimia D (2015) Whole blood human neutrophil trafficking in a microfluidic model of infection and inflammation. Lab Chip 15(12):2625–2633. https://doi.org/10.1039/c5lc00245a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sackmann EK, Berthier E, Young EW et al (2012) Microfluidic kit-on-a-lid: a versatile platform for neutrophil chemotaxis assays. Blood 120(14):e45–e53. https://doi.org/10.1182/blood-2012-03-416453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jones CN, Dalli J, Dimisko L et al (2012) Microfluidic chambers for monitoring leukocyte trafficking and humanized nano-proresolving medicines interactions. Proc Natl Acad Sci U S A 109(50):20560–20565. https://doi.org/10.1073/pnas.1210269109

    Article  PubMed  PubMed Central  Google Scholar 

  7. Schwarz J, Bierbaum V, Merrin J et al (2016) A microfluidic device for measuring cell migration towards substrate-bound and soluble chemokine gradients. Sci Rep 6:36440. https://doi.org/10.1038/srep36440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jain NG, Wong EA, Aranyosi AJ et al (2015) Microfluidic mazes to characterize T-cell exploration patterns following activation in vitro. Integr Biol (Camb) 7(11):1423–1431. https://doi.org/10.1039/c5ib00146c

    Article  CAS  Google Scholar 

  9. Chen YC, Allen SG, Ingram PN et al (2015) Single-cell migration chip for chemotaxis-based microfluidic selection of heterogeneous cell populations. Sci Rep 5:9980. https://doi.org/10.1038/srep09980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wong IY, Javaid S, Wong EA et al (2014) Collective and individual migration following the epithelial-mesenchymal transition. Nat Mater 13(11):1063–1071. https://doi.org/10.1038/nmat4062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Boyden S (1962) The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J Exp Med 115:453–466

    Article  CAS  Google Scholar 

  12. Jones CN, Hoang AN, Dimisko L et al (2014) Microfluidic platform for measuring neutrophil chemotaxis from unprocessed whole blood. J Vis Exp 88. https://doi.org/10.3791/51215

  13. Boneschansker L, Yan J, Wong E et al (2014) Microfluidic platform for the quantitative analysis of leukocyte migration signatures. Nat Commun 5:4787. https://doi.org/10.1038/ncomms5787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ramos CD, Canetti C, Souto JT et al (2005) MIP-1alpha[CCL3] acting on the CCR1 receptor mediates neutrophil migration in immune inflammation via sequential release of TNF-alpha and LTB4. J Leukoc Biol 78(1):167–177. https://doi.org/10.1189/jlb.0404237

    Article  CAS  PubMed  Google Scholar 

  15. Taub DD, Conlon K, Lloyd AR et al (1993) Preferential migration of activated CD4+ and CD8+ T cells in response to MIP-1 alpha and MIP-1 beta. Science 260(5106):355–358

    Article  CAS  Google Scholar 

  16. Singer M, Sansonetti PJ (2004) IL-8 is a key chemokine regulating neutrophil recruitment in a new mouse model of Shigella-induced colitis. J Immunol 173(6):4197–4206

    Article  CAS  Google Scholar 

  17. Becker H, Gartner C (2000) Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis 21(1):12–26. https://doi.org/10.1002/(sici)1522-2683(20000101)21:1<12::aid-elps12>3.0.co;2-7

    Article  CAS  PubMed  Google Scholar 

  18. Schindelin J, Rueden CT, Hiner MC et al (2015) The ImageJ ecosystem: an open platform for biomedical image analysis. Mol Reprod Dev 82(7–8):518–529. https://doi.org/10.1002/mrd.22489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  20. Tinevez JY, Perry N, Schindelin J et al (2017) TrackMate: an open and extensible platform for single-particle tracking. Methods 115:80–90. https://doi.org/10.1016/j.ymeth.2016.09.016

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline N. Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Boribong, B.P., Rahimi, A., Jones, C.N. (2019). Microfluidic Platform to Quantify Neutrophil Migratory Decision-Making. In: Allen, I. (eds) Mouse Models of Innate Immunity. Methods in Molecular Biology, vol 1960. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9167-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9167-9_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9166-2

  • Online ISBN: 978-1-4939-9167-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics