Advertisement

CRISPR/Cas9-Assisted Genome Editing in Murine Embryonic Stem Cells

  • Artiom GruzdevEmail author
  • Greg J. Scott
  • Thomas B. Hagler
  • Manas K. Ray
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1960)

Abstract

The study of gene function in normal human physiology and pathophysiology is complicated by countless factors such as genetic diversity (~98 million SNPs identified in the human genome as of June 2015), environmental exposure, epigenetic imprinting, maternal/in utero exposure, diet, exercise, age, sex, socioeconomic factors, and many other variables. Inbred mouse lines have allowed researchers to control for many of the variables that define human diversity but complicate the study of the human genome, gene/protein function, cellular and molecular pathways, and countless other genetic diseases. Furthermore, genetically modified mouse models enable us to generate and study mice whose genomes differ by as little as a single point mutation while controlling for non-genomic variables. This allows researchers to elucidate the quintessential function of a gene, which will further not only our scientific understanding, but provide key insight into human health and disease. Recent advances in CRISPR/Cas9 genome editing have revolutionized scientific protocols for introducing mutations into the mammalian genome. The ensuing chapter provides an overview of CRISPR/Cas9 genome editing in murine embryonic stem cells for the generation of genetically modified mouse models.

Keywords

Genetically modified mice Embryonic stem cells Gene-targeting CRISPR/Cas9 Embryonic stem cell transfection Embryonic stem cell screening Blastocyst isolation Microinjection Chimeric mice Germline transmission 

References

  1. 1.
    Doetschman T, Gregg RG, Maeda N et al (1987) Targeted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature 330(6148):576–578.  https://doi.org/10.1038/330576a0CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Thomas KR, Capecchi MR (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51(3):503–512CrossRefGoogle Scholar
  3. 3.
    Capecchi MR (2001) Generating mice with targeted mutations. Nat Med 7(10):1086–1090.  https://doi.org/10.1038/nm1001-1086CrossRefPubMedGoogle Scholar
  4. 4.
    Koller BH, Hagemann LJ, Doetschman T et al (1989) Germ-line transmission of a planned alteration made in a hypoxanthine phosphoribosyltransferase gene by homologous recombination in embryonic stem cells. Proc Natl Acad Sci U S A 86(22):8927–8931CrossRefGoogle Scholar
  5. 5.
    Snouwaert JN, Brigman KK, Latour AM et al (1992) An animal model for cystic fibrosis made by gene targeting. Science 257(5073):1083–1088CrossRefGoogle Scholar
  6. 6.
    Mouse Genome Sequencing C, Waterston RH, Lindblad-Toh K et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420(6915):520–562.  https://doi.org/10.1038/nature01262CrossRefGoogle Scholar
  7. 7.
    Ringwald M, Iyer V, Mason JC et al (2011) The IKMC web portal: a central point of entry to data and resources from the international knockout Mouse consortium. Nucleic Acids Res 39(Database issue):D849–D855.  https://doi.org/10.1093/nar/gkq879CrossRefPubMedGoogle Scholar
  8. 8.
    Lundberg KS, Shoemaker DD, Adams MW et al (1991) High-fidelity amplification using a thermostable DNA polymerase isolated from Pyrococcus furiosus. Gene 108(1):1–6CrossRefGoogle Scholar
  9. 9.
    Tsyrulnyk A, Moriggl R (2008) A detailed protocol for bacterial artificial chromosome recombineering to study essential genes in stem cells. Methods Mol Biol 430:269–293.  https://doi.org/10.1007/978-1-59745-182-6_19CrossRefPubMedGoogle Scholar
  10. 10.
    Williams RL, Hilton DJ, Pease S et al (1988) Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 336(6200):684–687.  https://doi.org/10.1038/336684a0CrossRefGoogle Scholar
  11. 11.
    Ying QL, Wray J, Nichols J et al (2008) The ground state of embryonic stem cell self-renewal. Nature 453(7194):519–523.  https://doi.org/10.1038/nature06968CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Folger KR, Wong EA, Wahl G et al (1982) Patterns of integration of DNA microinjected into cultured mammalian cells: evidence for homologous recombination between injected plasmid DNA molecules. Mol Cell Biol 2(11):1372–1387CrossRefGoogle Scholar
  13. 13.
    Yagi T, Ikawa Y, Yoshida K et al (1990) Homologous recombination at c-fyn locus of mouse embryonic stem cells with use of diphtheria toxin A-fragment gene in negative selection. Proc Natl Acad Sci U S A 87(24):9918–9922CrossRefGoogle Scholar
  14. 14.
    Connelly JP, Barker JC, Pruett-Miller S et al (2010) Gene correction by homologous recombination with zinc finger nucleases in primary cells from a mouse model of a generic recessive genetic disease. Mol Ther 18(6):1103–1110.  https://doi.org/10.1038/mt.2010.57CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Christian M, Cermak T, Doyle EL et al (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186(2):757–761.  https://doi.org/10.1534/genetics.110.120717CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823.  https://doi.org/10.1126/science.1231143CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Zerbino DR, Achuthan P, Akanni W et al (2018) Ensembl 2018. Nucleic Acids Res 46(D1):D754–D761.  https://doi.org/10.1093/nar/gkx1098CrossRefPubMedGoogle Scholar
  18. 18.
    Casper J, Zweig AS, Villarreal C et al (2018) The UCSC genome browser database: 2018 update. Nucleic Acids Res 46(D1):D762–D769.  https://doi.org/10.1093/nar/gkx1020CrossRefPubMedGoogle Scholar
  19. 19.
    Ran FA, Hsu PD, Wright J et al (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8(11):2281–2308.  https://doi.org/10.1038/nprot.2013.143CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157(6):1262–1278.  https://doi.org/10.1016/j.cell.2014.05.010CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Hasty P, Rivera-Perez J, Bradley A (1991) The length of homology required for gene targeting in embryonic stem cells. Mol Cell Biol 11(11):5586–5591CrossRefGoogle Scholar
  22. 22.
    Lu ZH, Books JT, Kaufman RM et al (2003) Long targeting arms do not increase the efficiency of homologous recombination in the beta-globin locus of murine embryonic stem cells. Blood 102(4):1531–1533.  https://doi.org/10.1182/blood-2003-03-0708CrossRefPubMedGoogle Scholar
  23. 23.
    Zimmermann AG, Sun Y (2013) Conventional murine gene targeting. Methods Mol Biol 1031:1–18.  https://doi.org/10.1007/978-1-62703-481-4_1CrossRefPubMedGoogle Scholar
  24. 24.
    van den Ent F, Lowe J (2006) RF cloning: a restriction-free method for inserting target genes into plasmids. J Biochem Biophys Methods 67(1):67–74.  https://doi.org/10.1016/j.jbbm.2005.12.008CrossRefPubMedGoogle Scholar
  25. 25.
    Scott GJGA, Hagler TB, Ray MK (2018) Trans–inner cell mass injection of embryonic stem cells leads to higher chimerism rates. J Vis Exp.  https://doi.org/10.3791/56955
  26. 26.
    Bin Ali R, van der Ahe F, Braumuller TM et al (2014) Improved pregnancy and birth rates with routine application of nonsurgical embryo transfer. Transgenic Res 23(4):691–695.  https://doi.org/10.1007/s11248-014-9802-3CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Deng JM, Satoh K, Wang H et al (2011) Generation of viable male and female mice from two fathers. Biol Reprod 84(3):613–618.  https://doi.org/10.1095/biolreprod.110.088831CrossRefPubMedGoogle Scholar
  28. 28.
    Wilson S, Sheardown SA (2011) Identification of germline competent chimaeras by copulatory plug genotyping. Transgenic Res 20(2):429–433.  https://doi.org/10.1007/s11248-010-9413-6CrossRefPubMedGoogle Scholar
  29. 29.
    Moreno-Mateos MA, Vejnar CE, Beaudoin JD et al (2015) CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat Methods 12(10):982–988.  https://doi.org/10.1038/nmeth.3543CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Doench JG, Fusi N, Sullender M et al (2016) Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol 34(2):184–191.  https://doi.org/10.1038/nbt.3437CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Artiom Gruzdev
    • 1
    Email author
  • Greg J. Scott
    • 1
  • Thomas B. Hagler
    • 1
  • Manas K. Ray
    • 1
  1. 1.Knockout Mouse Core, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health SciencesNational Institutes of HealthResearch Triangle ParkUSA

Personalised recommendations