Skip to main content

Computation and Selection of Optimal Biomarker Combinations by Integrative ROC Analysis Using CombiROC

Part of the Methods in Molecular Biology book series (MIMB,volume 1959)


The diagnostic accuracy of biomarker-based approaches can be considerably improved by combining multiple markers. A biomarker’s capacity to identify specific subjects is usually assessed using receiver operating characteristic (ROC) curves. Multimarker signatures are complicated to select as data signatures must be integrated using sophisticated statistical methods. CombiROC, developed as a user-friendly web tool, helps researchers to accurately determine optimal combinations of markers identified by a range of omics methods. With CombiROC, data of different types, such as proteomics and transcriptomics, can be analyzed using Sensitivity/Specificity filters: the number of candidate marker panels arising from combinatorial analysis is easily optimized bypassing limitations imposed by the nature of different experimental approaches. Users have full control over initial selection stringency, then CombiROC computes sensitivity and specificity for all marker combinations, determines performance for the best combinations, and produces ROC curves for automatic comparisons. All steps can be visualized in a graphic interface. CombiROC is designed without hard-coded thresholds, to allow customized fitting of each specific dataset: this approach dramatically reduces computational burden and false-negative rates compared to fixed thresholds. CombiROC can be accessed at

Key words

  • Biomarker
  • Protein
  • miRNA
  • ROC curve
  • Statistical analysis
  • Combinatorial analysis
  • Multimarker signatures

This is a preview of subscription content, access via your institution.

Buying options

USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more


  1. Pfaffl MW (2013) Transcriptional biomarkers. Methods 59(1):1–2.

    CrossRef  CAS  PubMed  Google Scholar 

  2. Janvilisri T, Suzuki H, Scaria J et al (2015) High-throughput screening for biomarker discovery. Dis Markers 2015:108064.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sotiriou C, Piccart MJ (2007) Taking gene-expression profiling to the clinic: when will molecular signatures become relevant to patient care? Nat Rev Cancer 7(7):545–553.

    CrossRef  CAS  PubMed  Google Scholar 

  4. Hainard A, Tiberti N, Robin X et al (2009) A combined CXCL10, CXCL8 and H-FABP panel for the staging of human African trypanosomiasis patients. PLoS Negl Trop Dis 3(6):e459.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  5. Turck N, Vutskits L, Sanchez-Pena P et al (2010) A multiparameter panel method for outcome prediction following aneurysmal subarachnoid hemorrhage. Intensive Care Med 36(1):107–115.

    CrossRef  PubMed  Google Scholar 

  6. Fung KYC, Tabor B, Buckley MJ et al (2015) Blood-based protein biomarker panel for the detection of colorectal cancer. PLoS One 10(3):e0120425.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li J, Zhang Z, Rosenzweig J et al (2002) Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer. Clin Chem 48(8):1296–1304

    CAS  PubMed  Google Scholar 

  8. Bombois S, Duhamel A, Salleron J et al (2013) A new decision tree combining Abeta 1-42 and p-Tau levels in Alzheimer’s diagnosis. Curr Alzheimer Res 10(4):357–364.

    CrossRef  CAS  PubMed  Google Scholar 

  9. Zhang F, Deng Y, Drabier R (2013) Multiple biomarker panels for early detection of breast cancer in peripheral blood. Biomed Res Int 2013:781618.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  10. Buyse M, Michiels S, Sargent DJ et al (2011) Integrating biomarkers in clinical trials. Expert Rev Mol Diagn 11(2):171–182.

    CrossRef  PubMed  Google Scholar 

  11. de Gramont A, Watson S, Ellis LM et al (2015) Pragmatic issues in biomarker evaluation for targeted therapies in cancer. Nat Rev Clin Oncol 12(4):197–212.

    CrossRef  PubMed  Google Scholar 

  12. Kramar A, Faraggi D, Fortuné A et al (2001) mROC: a computer program for combining tumour markers in predicting disease states. Comput Methods Prog Biomed 66(2–3):199–207.

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Mauro Bombaci or Riccardo L. Rossi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bombaci, M., Rossi, R.L. (2019). Computation and Selection of Optimal Biomarker Combinations by Integrative ROC Analysis Using CombiROC. In: Brun, V., Couté, Y. (eds) Proteomics for Biomarker Discovery. Methods in Molecular Biology, vol 1959. Humana Press, New York, NY.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9163-1

  • Online ISBN: 978-1-4939-9164-8

  • eBook Packages: Springer Protocols