Skip to main content

Pre- and Post-analytical Factors in Biomarker Discovery

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1959))

Abstract

The translation of promising biomarkers, which were identified in biomarker discovery experiments, to clinical assays is one of the key challenges in present-day proteomics research. Many so-called “biomarker candidates” fail to progress beyond the discovery phase, and much emphasis is placed on pre- and post-analytical variability in an attempt to provide explanations for this bottleneck in the biomarker development pipeline. With respect to such variability, there is a large number of pre- and post-analytical factors which may impact the outcomes of proteomics experiments and thus necessitate tight control. This chapter highlights some of these factors and provides guidance for addressing them on the basis of examples from previously published proteomics studies.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Papavramidou N, Papavramidis T, Demetriou T (2010) Ancient Greek and Greco-Roman methods in modern surgical treatment of cancer. Ann Surg Oncol 17(3):665–667. https://doi.org/10.1245/s10434-009-0886-6

    Google Scholar 

  2. Weiss L (2000) Metastasis of cancer: a conceptual history from antiquity to the 1990s. Cancer Metastasis Rev 19(3–4):193–383

    Google Scholar 

  3. Jackson WA (2001) A short guide to humoral medicine. Trends Pharmacol Sci 22(9):487–489. https://doi.org/10.1016/S0165-6147(00)01804-6

    Google Scholar 

  4. Paulovich AG, Whiteaker JR, Hoofnagle AN et al (2008) The interface between biomarker discovery and clinical validation: the tar pit of the protein biomarker pipeline. Proteomics Clin Appl 2(10–11):1386–1402. https://doi.org/10.1002/prca.200780174

    Google Scholar 

  5. McCarthy JJ, McLeod HL, Ginsburg GS (2013) Genomic medicine: a decade of successes, challenges, and opportunities. Sci Transl Med 5(189):189sr184. https://doi.org/10.1126/scitranslmed.3005785

    Google Scholar 

  6. Calvaruso V, Craxì A (2012) 2011 European Association of the Study of the Liver hepatitis C virus clinical practice guidelines. Liver Int 32(Suppl 1):2–8. https://doi.org/10.1111/j.1478-3231.2011.02703.x

    Google Scholar 

  7. Nkuipou-Kenfack E, Zurbig P, Mischak H (2017) The long path towards implementation of clinical proteomics: exemplified based on CKD273. Proteomics Clin Appl 11(5–6). https://doi.org/10.1002/prca.201600104

  8. Toss A, De Matteis E, Rossi E et al (2013) Ovarian cancer: can proteomics give new insights for therapy and diagnosis? Int J Mol Sci 14(4):8271–8290. https://doi.org/10.3390/ijms14048271

    Google Scholar 

  9. Zhang Z, Bast RC Jr, Yu Y et al (2004) Three biomarkers identified from serum proteomic analysis for the detection of early stage ovarian cancer. Cancer Res 64(16):5882–5890. https://doi.org/10.1158/0008-5472.CAN-04-0746

    Google Scholar 

  10. Fung ET (2010) A recipe for proteomics diagnostic test development: the OVA1 test, from biomarker discovery to FDA clearance. Clin Chem 56(2):327–329. https://doi.org/10.1373/clinchem.2009.140855

    Google Scholar 

  11. Li D, Chan DW (2014) Proteomic cancer biomarkers from discovery to approval: it’s worth the effort. Expert Rev Proteomics 11(2):135–136. https://doi.org/10.1586/14789450.2014.897614

    Google Scholar 

  12. Ransohoff DF (2005) Lessons from controversy: ovarian cancer screening and serum proteomics. J Natl Cancer Inst 97(4):315–319. https://doi.org/10.1093/jnci/dji054

    Google Scholar 

  13. Petricoin EF, Ardekani AM, Hitt BA et al (2002) Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359(9306):572–577. https://doi.org/10.1016/S0140-6736(02)07746-2

    Google Scholar 

  14. Check E (2004) Proteomics and cancer: running before we can walk? Nature 429(6991):496–497. https://doi.org/10.1038/429496a

    Google Scholar 

  15. Sorace JM, Sorace JM, Zhan M (2003) A data review and re-assessment of ovarian cancer serum proteomic profiling. BMC Bioinformatics 4:24. https://doi.org/10.1186/1471-2105-4-24

    Google Scholar 

  16. Baggerly KA, Morris JS, Edmonson SR et al (2005) Signal in noise: evaluating reported reproducibility of serum proteomic tests for ovarian cancer. J Natl Cancer Inst 97(4):307–309. https://doi.org/10.1093/jnci/dji008

    Google Scholar 

  17. Liotta LA, Lowenthal M, Mehta A et al (2005) Importance of communication between producers and consumers of publicly available experimental data. J Natl Cancer Inst 97(4):310–314. https://doi.org/10.1093/jnci/dji053

    Google Scholar 

  18. Ransohoff DF (2005) Bias as a threat to the validity of cancer molecular-marker research. Nat Rev Cancer 5(2):142–149. https://doi.org/10.1038/nrc1550

    Google Scholar 

  19. Rifai N, Gillette MA, Carr SA (2006) Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat Biotechnol 24(8):971–983. https://doi.org/10.1038/nbt1235

    Google Scholar 

  20. US FDA (2001) Guidance for Industry: Bioanalytical Method Validation. US Department of Health and Human Services, FDA, Center for Drug Evaluation and Research, Rockville, MD. https://www.fda.gov/downloads/Drugs/Guidance/ucm070107.pdf

  21. Guideline on Bioanalytical Method Validation (2011) European Medicines Agency (EMEA/CHMP/EWP/192217/2009). London. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2011/08/WC500109686.pdf

  22. CLSI (2014) Liquid-chromatography-mass spectrometry methods; approved guideline. CLSI document C62-A. Clinical and Laboratory Standards Institute, Wayne, PA

    Google Scholar 

  23. Rai AJ, Gelfand CA, Haywood BC et al (2005) HUPO Plasma Proteome Project specimen collection and handling: towards the standardization of parameters for plasma proteome samples. Proteomics 5(13):3262–3277. https://doi.org/10.1002/pmic.200401245

    Google Scholar 

  24. Mischak H, Allmaier G, Apweiler R et al (2010) Recommendations for biomarker identification and qualification in clinical proteomics. Sci Transl Med 2(46):46ps42. https://doi.org/10.1126/scitranslmed.3001249

    Google Scholar 

  25. Carr S, Aebersold R, Baldwin M et al (2004) The need for guidelines in publication of peptide and protein identification data. Mol Cell Proteomics 3(6):531–533. https://doi.org/10.1074/mcp.T400006-MCP200

    Google Scholar 

  26. Booth B, Arnold ME, DeSilva B et al (2015) Workshop report: crystal city V—quantitative bioanalytical method validation and implementation: the 2013 revised FDA guidance. AAPS J 17(2):277–288. https://doi.org/10.1208/s12248-014-9696-2

    Google Scholar 

  27. Abbatiello S, Ackermann BL, Borchers C et al (2017) New guidelines for publication of manuscripts describing development and application of targeted mass spectrometry measurements of peptides and proteins. Mol Cell Proteomics 16(3):327–328. https://doi.org/10.1074/mcp.E117.067801

    Google Scholar 

  28. GBSI (2013) The case for standards in life science research: seizing opportunities at a time of critical need. Global Biological Standards Institute, Washington, DC. https://www.gbsi.org/wp-content/uploads/2013/12/The-Case-for-Standards.pdf

    Google Scholar 

  29. Freedman LP, Cockburn IM, Simcoe TS (2015) The economics of reproducibility in preclinical research. PLoS Biol 13(6):e1002165. https://doi.org/10.1371/journal.pbio.1002165

    Google Scholar 

  30. Deutsch EW, Overall CM, Van Eyk JE et al (2016) Human proteome project mass spectrometry data interpretation guidelines 2.1. J Proteome Res 15(11):3961–3970. https://doi.org/10.1021/acs.jproteome.6b00392

    Google Scholar 

  31. Wilkinson MD, Dumontier M, Aalbersberg IJ et al (2016) The FAIR Guiding Principles for scientific data management and stewardship. Sci Data 3:160018. https://doi.org/10.1038/sdata.2016.18

    Google Scholar 

  32. Bruderer R, Bernhardt OM, Gandhi T et al (2017) Optimization of experimental parameters in data-independent mass spectrometry significantly increases depth and reproducibility of results. Mol Cell Proteomics 16(12):2296–2309. https://doi.org/10.1074/mcp.RA117.000314

    Google Scholar 

  33. US FDA (2013) Guidance for Industry: Bioanalytical Method Validation. US Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research, Center for Veterinary Medicine, Rockville, MD. https://www.fda.gov/downloads/Drugs/Guidances/ucm070107.pdf

    Google Scholar 

  34. Narayanan S (2000) The preanalytic phase. An important component of laboratory medicine. Am J Clin Pathol 113(3):429–452. https://doi.org/10.1309/C0NM-Q7R0-LL2E-B3UY

    Google Scholar 

  35. Kellogg MD, Ellervik C, Morrow D et al (2015) Preanalytical considerations in the design of clinical trials and epidemiological studies. Clin Chem 61(6):797–803. https://doi.org/10.1373/clinchem.2014.226118

    Google Scholar 

  36. Salvagno GL, Danese E, Lippi G (2017) Preanalytical variables for liquid chromatography-mass spectrometry (LC-MS) analysis of human blood specimens. Clin Biochem 50(10–11):582–586. https://doi.org/10.1016/j.clinbiochem.2017.04.012

    Google Scholar 

  37. Ellervik C, Vaught J (2015) Preanalytical variables affecting the integrity of human biospecimens in biobanking. Clin Chem 61(7):914–934. https://doi.org/10.1373/clinchem.2014.228783

    Google Scholar 

  38. Geyer PE, Holdt LM, Teupser D et al (2017) Revisiting biomarker discovery by plasma proteomics. Mol Syst Biol 13(9):942. https://doi.org/10.15252/msb.20156297

    Google Scholar 

  39. O’Bryant SE, Gupta V, Henriksen K et al (2015) Guidelines for the standardization of preanalytic variables for blood-based biomarker studies in Alzheimer’s disease research. Alzheimers Dement 11(5):549–560. https://doi.org/10.1016/j.jalz.2014.08.099

    Google Scholar 

  40. Franciosi L, Postma DS, van den Berge M et al (2014) Susceptibility to COPD: differential proteomic profiling after acute smoking. PLoS One 9(7):e102037. https://doi.org/10.1371/journal.pone.0102037

    Google Scholar 

  41. Lippi G, Becan-McBride K, Behulova D et al (2013) Preanalytical quality improvement: in quality we trust. Clin Chem Lab Med 51(1):229–241. https://doi.org/10.1515/cclm-2012-0597

    Google Scholar 

  42. Rosenling T, Slim CL, Christin C et al (2009) The effect of pre-analytical factors on stability of the proteome and selected metabolites in cerebrospinal fluid (CSF). J Proteome Res 8(12):5511–5522. https://doi.org/10.1021/pr9005876

    Google Scholar 

  43. Tissot JD, Currat C, Sprumont D (2017) Proteomics of blood plasma/serum samples stored in biobanks: insights for clinical application. Expert Rev Proteomics 14(8):643–644. https://doi.org/10.1080/14789450.2017.1324301

    Google Scholar 

  44. Schweitzer M, Pohl M, Hanna-Brown M et al (2010) Implications and opportunities of applying QbD principles to analytical measurements. Pharm Technol 34(2):52–59

    Google Scholar 

  45. Yin P, Lehmann R, Xu G (2015) Effects of pre-analytical processes on blood samples used in metabolomics studies. Anal Bioanal Chem 407(17):4879–4892. https://doi.org/10.1007/s00216-015-8565-x

    Google Scholar 

  46. Kong FS, Zhao L, Wang L et al (2017) Ensuring sample quality for blood biomarker studies in clinical trials: a multicenter international study for plasma and serum sample preparation. Transl Lung Cancer Res 6(6):625–634. https://doi.org/10.21037/tlcr.2017.09.13

    Google Scholar 

  47. Dakappagari N, Zhang H, Stephen L et al (2017) Recommendations for clinical biomarker specimen preservation and stability assessments. Bioanalysis 9(8):643–653. https://doi.org/10.4155/bio-2017-0009

    Google Scholar 

  48. Box GEP, Hunter JS, Hunter WG (2005) Statistics for experimenters: design, innovation, and discovery, 2nd edn. John Wiley & Sons, Hoboken, NJ

    Google Scholar 

  49. Montgomery DC (2012) Design and analysis of experiments, 8th edn. John Wiley & Sons, Hoboken, NJ

    Google Scholar 

  50. Mateos J, Carneiro I, Corrales F et al (2017) Multicentric study of the effect of pre-analytical variables in the quality of plasma samples stored in biobanks using different complementary proteomic methods. J Proteomics 150:109–120. https://doi.org/10.1016/j.jprot.2016.09.003

    Google Scholar 

  51. Malm J, Fehniger TE, Danmyr P et al (2013) Developments in biobanking workflow standardization providing sample integrity and stability. J Proteomics 95:38–45. https://doi.org/10.1016/j.jprot.2013.06.035

    Google Scholar 

  52. Malm J, Vegvari A, Rezeli M et al (2012) Large scale biobanking of blood - the importance of high density sample processing procedures. J Proteomics 76:116–124. https://doi.org/10.1016/j.jprot.2012.05.003

    Google Scholar 

  53. Malm J, Lindberg H, Erlinge D et al (2015) Semi-automated biobank sample processing with a 384 high density sample tube robot used in cancer and cardiovascular studies. Clin Transl Med 4(27):2–8. https://doi.org/10.1186/s40169-015-0067-0

    Google Scholar 

  54. Lengelle J, Panopoulos E, Betsou F (2008) Soluble CD40 ligand as a biomarker for storage-related preanalytic variations of human serum. Cytokine 44(2):275–282. https://doi.org/10.1016/j.cyto.2008.08.010

    Google Scholar 

  55. Betsou F, Gunter E, Clements J et al (2013) Identification of evidence-based biospecimen quality-control tools: a report of the International Society for Biological and Environmental Repositories (ISBER) Biospecimen Science Working Group. J Mol Diagn 15(1):3–16. https://doi.org/10.1016/j.jmoldx.2012.06.008

    Google Scholar 

  56. Chaigneau C, Cabioch T, Beaumont K et al (2007) Serum biobank certification and the establishment of quality controls for biological fluids: examples of serum biomarker stability after temperature variation. Clin Chem Lab Med 45(10):1390–1395. https://doi.org/10.1515/CCLM.2007.160

    Google Scholar 

  57. Doucet M, Becker KF, Bjorkman J et al (2017) Quality Matters: 2016 Annual Conference of the National Infrastructures for Biobanking. Biopreserv Biobank 15(3):270–276. https://doi.org/10.1089/bio.2016.0053

    Google Scholar 

  58. Vaught J, Lockhart NC (2012) The evolution of biobanking best practices. Clin Chim Acta 413(19–20):1569–1575. https://doi.org/10.1016/j.cca.2012.04.030

    Google Scholar 

  59. Van Midwoud PM, Rieux L, Bischoff R et al (2007) Improvement of recovery and repeatability in liquid chromatography-mass spectrometry analysis of peptides. J Proteome Res 6(2):781–791. https://doi.org/10.1021/pr0604099

    Google Scholar 

  60. Mitra V, Govorukhina N, Zwanenburg G et al (2016) Identification of analytical factors affecting complex proteomics profiles acquired in a factorial design study with analysis of variance: simultaneous component analysis. Anal Chem 88(8):4229–4238. https://doi.org/10.1021/acs.analchem.5b03483

    Google Scholar 

  61. Govorukhina NI, de Vries M, Reijmers TH et al (2009) Influence of clotting time on the protein composition of serum samples based on LC-MS data. J Chromatogr B Analyt Technol Biomed Life Sci 877(13):1281–1291. https://doi.org/10.1016/j.jchromb.2008.10.029

    Google Scholar 

  62. Suits F, Hoekman B, Rosenling T et al (2011) Threshold-avoiding proteomics pipeline. Anal Chem 83(20):7786–7794. https://doi.org/10.1021/ac201332j

    Google Scholar 

  63. Smilde AK, Jansen JJ, Hoefsloot HC et al (2005) ANOVA-simultaneous component analysis (ASCA): a new tool for analyzing designed metabolomics data. Bioinformatics 21(13):3043–3048. https://doi.org/10.1093/bioinformatics/btm419

    Google Scholar 

  64. Rosenling T, Stoop MP, Smolinska A et al (2011) The impact of delayed storage on the measured proteome and metabolome of human cerebrospinal fluid. Clin Chem 57(12):1703–1711. https://doi.org/10.1373/clinchem.2011.167601

    Google Scholar 

  65. Tibshirani R, Hastie T, Narasimhan B et al (2002) Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc Natl Acad Sci U S A 99(10):6567–6572. https://doi.org/10.1073/pnas.082099299

    Google Scholar 

  66. Hoekman B, Breitling R, Suits F et al (2012) msCompare: a framework for quantitative analysis of label-free LC-MS data for comparative candidate biomarker studies. Mol Cell Proteomics 11(6):M111.015974. https://doi.org/10.1074/mcp.M111.015974

    Google Scholar 

  67. Christin C, Hoefsloot HCJ, Smilde AK et al (2013) A critical assessment of feature selection methods for biomarker discovery in clinical proteomics. Mol Cell Proteomics 12(1):263–276. https://doi.org/10.1074/mcp.M112.022566

    Google Scholar 

  68. Group F-NBW (2016) BEST (Biomarkers, EndpointS, and other Tools) Resource. Silver Spring (MD), Food and Drug Administration (US), Bethesda (MD): National Institutes of Health (US)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Bischoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Klont, F., Horvatovich, P., Govorukhina, N., Bischoff, R. (2019). Pre- and Post-analytical Factors in Biomarker Discovery. In: Brun, V., Couté, Y. (eds) Proteomics for Biomarker Discovery. Methods in Molecular Biology, vol 1959. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9164-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9164-8_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9163-1

  • Online ISBN: 978-1-4939-9164-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics