Skip to main content

Methods to Determine Interaction Interfaces Between β-Arrestins and Their Protein Partners

  • Protocol
  • First Online:
Beta-Arrestins

Abstract

β-arrestins are so-called hub proteins: they make complexes with many different partners, assembling functional complexes, and thereby fulfilling their biological function. The importance of this process in G protein-coupled receptor (GPCR) signalling has been fully demonstrated for many different receptors. For direct interactions, determining the interface regions, on β-arrestins and on the partners, is crucial for understanding the function of the complex. Indeed, this brings information on which proteins can interact simultaneously with β-arrestins, or, on the contrary, which partners are exclusive. We present here a method in two steps: protein–protein docking allows finding a limited number of peptides predicted to be involved in the interaction, and then experimental approaches that might be used for validating the prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Crepieux P, Poupon A, Langonne-Gallay N et al (2017) A comprehensive view of the β-arrestinome. Front Endocrinol 8:32

    Article  Google Scholar 

  2. Kiel C, Verschueren E, Yang J-S et al (2013) Integration of protein abundance and structure data reveals competition in the ErbB signaling network. Sci Signal 6:ra109

    Article  PubMed  Google Scholar 

  3. Kim PM, Lu LJ, Xia Y et al (2006) Relating three-dimensional structures to protein networks provides evolutionary insights. Science 314:1938–1941

    Article  CAS  PubMed  Google Scholar 

  4. Kiel C, Vogt A, Campagna A et al (2011) Structural and functional protein network analyses predict novel signaling functions for rhodopsin. Mol Syst Biol 7:551

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kar G, Gursoy A, Keskin O (2009) Human cancer protein-protein interaction network: a structural perspective. PLoS Comput Biol 5:e1000601

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wang X, Wei X, Thijssen B et al (2012) Three-dimensional reconstruction of protein networks provides insight into human genetic disease. Nat Biotechnol 30:159–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cunningham BC, Wells JA (1989) High-resolution epitope mapping of hGH-receptor interactions by alanine-scanning mutagenesis. Science 244:1081–1085

    Article  CAS  PubMed  Google Scholar 

  8. Forsström B, Axnäs BB, Stengele K-P et al (2014) Proteome-wide epitope mapping of antibodies using ultra-dense peptide arrays. Mol Cell Proteomics 13:1585–1597

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hansen CS, Østerbye T, Marcatili P et al (2017) ArrayPitope: automated analysis of amino acid substitutions for peptide microarray-based antibody epitope mapping. PLoS One 12:e0168453

    Article  PubMed  PubMed Central  Google Scholar 

  10. Opuni KF, Al-Majdoub M, Yefremova Y et al (2016) Mass spectrometric epitope mapping. Mass Spectrom Rev 9999:1–13

    Google Scholar 

  11. Wei H, Mo J, Tao L et al (2014) Hydrogen/deuterium exchange mass spectrometry for probing higher order structure of protein therapeutics: methodology and applications. Drug Discov Today 19:95–102

    Article  CAS  PubMed  Google Scholar 

  12. Bourquard T, Landomiel F, Reiter E et al (2015) Unraveling the molecular architecture of a G protein-coupled receptor/β-arrestin/Erk module complex. Sci Rep 5:10760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cassier E, Gallay N, Bourquard T et al (2017) Phosphorylation of β-arrestin2 at Thr383 by MEK underlies β-arrestin-dependent activation of Erk1/2 by GPCRs. Elife 6:e23777

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bourquard T, Bernauer J, Azé J et al (2009) Comparing Voronoi and Laguerre tessellations in the protein-protein docking context, presented at the Voronoi diagrams, 2009. ISVD’09. In: Sixth international symposium on Voronoi diagrams

    Google Scholar 

  15. Azé J, Bourquard T, Hamel S et al (2011) Using Kendall-τ meta-bagging to improve protein-protein docking predictions. In: Pattern recognition in bioinformatics. Berlin Heidelberg, Springer, pp 284–295

    Chapter  Google Scholar 

  16. Bourquard T, Bernauer J, Azé J et al (2011) A collaborative filtering approach for protein-protein docking scoring functions. PLoS One 6:e18541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Berman HM, Westbrook J, Feng Z et al (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This publication was funded with support from the French National Research Agency under the program “Investissements d’avenir” Grant Agreement LabEx MabImprove: ANR-10-LABX-53, ANR (Contract no ANR-2011-1619 01), ANR GPCRnet, MABSILICO, and “ARD2020 Biomédicament” grants from Région Centre (32000593 APR Biomedicament).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Poupon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bourquard, T. et al. (2019). Methods to Determine Interaction Interfaces Between β-Arrestins and Their Protein Partners. In: Scott, M., Laporte, S. (eds) Beta-Arrestins. Methods in Molecular Biology, vol 1957. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9158-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9158-7_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9157-0

  • Online ISBN: 978-1-4939-9158-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics