Abstract
MicroRNAs (miRNAs) play important roles in development, differentiation, and homeostasis by regulating protein translation. In B-cell lymphoma, many miRNAs have altered expression levels, and for a limited subset of them, experimental data supports their functional relevance in lymphoma pathogenesis. This chapter describes an unbiased next-generation sequencing (NGS)-based high-throughput screening approach to identify miRNAs that are involved in the control of cell growth. First, we provide a protocol for performing high-throughput screening for miRNA inhibition and overexpression. Second, we describe the procedure for next-generation sequencing library preparation. Third, we provide a workflow for data analysis.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chendrimada TP, Gregory RI, Kumaraswamy E et al (2005) TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436:740–744
Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are MicroRNA targets. Cell 120(1):15–20
Vasilatou D, Papageorgiou S, Pappa V et al (2009) The role of microRNAs in normal and malignant hematopoiesis. Eur J Haematol 84(1):1–16
Koralov SB, Muljo SA, Galler GR et al (2008) Dicer ablation affects antibody diversity and cell survival in the B lymphocyte lineage. Cell 132(5):860–874
de Yébenes VG, Bartolomé-Izquierdo N, Ramiro AR (2013) Regulation of B-cell development and function by microRNAs. Immunol Rev 253(1):25–39
Eis PS, Tam W, Sun L et al (2005) Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci U S A 102(10):3627–3632
Kluiver J, Haralambieva E, de Jong D et al (2006) Lack of BIC and microRNA miR-155 expression in primary cases of Burkitt lymphoma. Genes Chromosom Cancer 45(2):147–153
Costinean S, Zanesi N, Pekarsky Y et al (2006) Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in Eμ-miR155 transgenic mice. Proc Natl Acad Sci U S A 103(18):7024–7029
Ota A, Tagawa H, Karnan S et al (2004) Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res 64(9):3087–3095
Robertus JL, Kluiver J, Weggemans C et al (2010) MiRNA profiling in B non-Hodgkin lymphoma: a MYC-related miRNA profile characterizes Burkitt lymphoma. Br J Haematol 149(6):896–899
Scholtysik R, Kreuz M, Klapper W et al (2010) Detection of genomic aberrations in molecularly defined Burkitt’s lymphoma by array-based, high resolution, single nucleotide polymorphism analysis. Haematologica 95(12):2047–2055
Xiao C, Srinivasan L, Calado DP et al (2008) Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nat Immunol 9:405–414
He L, Thomson JM, Hemann MT et al (2005) A microRNA polycistron as a potential human oncogene. Nature 435:828–833
Mu P, Han Y, Betel D et al (2009) Genetic dissection of the miR-17~92 cluster of microRNAs in Myc-induced B-cell lymphomas. Genes Dev 23(24):2806–2811
Olive V, Bennett MJ, Walker JC et al (2009) miR-19 is a key oncogenic component of mir-17-92. Genes Dev 23(24):2839–2849
Medina PP, Nolde M, Slack FJ (2010) OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature 467:86–90
Calin GA, Dumitru CD, Shimizu M et al (2002) Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99(24):15524–15529
Klein U, Lia M, Crespo M et al (2010) The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell 17(1):28–40
Shang W, Wang F, Fan G et al (2017) Key elements for designing and performing a CRISPR/Cas9-based genetic screen. J Genet Genomics 44(9):439–449
Eulalio A, Mano M (2015) MicroRNA screening and the quest for biologically relevant targets. J Biomol Screen 20(8):1003–1017
Voorhoeve PM, le Sage C, Schrier M et al (2006) A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 124(6):1169–1181
Choi Y, Yoon S, Byun Y et al (2015) MicroRNA library screening identifies growth-suppressive microRNAs that regulate genes involved in cell cycle progression and apoptosis. Exp Cell Res 339(2):320–332
Maudet C, Mano M, Sunkavalli U et al (2014) Functional high-throughput screening identifies the miR-15 microRNA family as cellular restriction factors for Salmonella infection. Nat Commun 5:4718
Morris VA, Cummings C, Meshinchi S et al (2014) Functional miRNA expression library screen identifies miRNAs that alter proliferation and differentiation in acute myeloid leukemia. Blood 124(21):3541–3541
Du L, Borkowski R, Zhao Z et al (2013) A high-throughput screen identifies miRNA inhibitors regulating lung cancer cell survival and response to paclitaxel. RNA Biol 10(11):1700–1713
Mullokandov G, Baccarini A, Ruzo A et al (2012) High-throughput assessment of microRNA activity and function using microRNA sensor and decoy libraries. Nat Methods 9:840–846
Nikolic I, Elsworth B, Dodson E et al (2017) Discovering cancer vulnerabilities using high-throughput micro-RNA screening. Nucleic Acids Res 45(22):12657–12670
Chang H, Yi B, Ma R et al (2016) CRISPR/cas9, a novel genomic tool to knock down microRNA in vitro and in vivo. Sci Rep 6:22312
Friedländer MR, Chen W, Adamidi C et al (2008) Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol 26:407–415
Kluiver J, Slezak-Prochazka I, van den Berg A (2013) Studying microRNAs in lymphoma. Methods Mol Biol 971:265–276
Yuan Y, Kluiver J, Koerts J et al (2017) miR-24-3p is overexpressed in Hodgkin lymphoma and protects Hodgkin and Reed-Sternberg cells from apoptosis. Am J Pathol 187(6):1343–1355
Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760
Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079
Tukey J (1977) Exploratory data analysis. Pearson, London, UK
Buschmann T, Bystrykh LV (2013) Levenshtein error-correcting barcodes for multiplexed DNA sequencing. BMC Bioinformatics 14(1):272
Bystrykh LV (2012) Generalized DNA barcode design based on hamming codes. PLoS One 7(5):e36852
Acknowledgments
This work was supported by grants from the National Science Centre, Poland (grant no. 2016/23/D/NZ1/01611 to A.D.-K.), and the Pediatric Oncology Foundation Groningen, the Netherlands (SKOG 11-001 to J.K. and A.v.d.B.).
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Science+Business Media, LLC, part of Springer Nature
About this protocol
Cite this protocol
Kluiver, J., Niu, F., Yuan, Y., Kok, K., van den Berg, A., Dzikiewicz-Krawczyk, A. (2019). NGS-Based High-Throughput Screen to Identify MicroRNAs Regulating Growth of B-Cell Lymphoma. In: Küppers, R. (eds) Lymphoma. Methods in Molecular Biology, vol 1956. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9151-8_12
Download citation
DOI: https://doi.org/10.1007/978-1-4939-9151-8_12
Published:
Publisher Name: Humana Press, New York, NY
Print ISBN: 978-1-4939-9150-1
Online ISBN: 978-1-4939-9151-8
eBook Packages: Springer Protocols