Skip to main content

Production of Recombinant Trypanosoma cruzi Antigens in Leishmania tarentolae

  • Protocol
  • First Online:
T. cruzi Infection

Abstract

Trypanosomatids are unicellular organisms that colonize a wide diversity of environments and hosts. For instance, Trypanosoma cruzi is a human pathogen responsible for Chagas diseases, while Leishmania tarentolae infects amphibians and became a biotechnological tool suitable for recombinant protein expression. T. cruzi antigens are needed for the development of improved epitope-based methods for diagnosis and treatment of Chagas disease. Molecular cloning for the production of recombinant proteins offers the possibility to obtain T. cruzi antigens at high yield and purity. L. tarentolae appears as the ideal expression host to obtain recombinant T. cruzi antigens with a structure and posttranslational modifications typical of trypanosomatids. In this chapter, we present a protocol for the analytical to mid-scale production of recombinant T. cruzi antigens, using L. tarentolae as expression host (LEXSY® inducible system).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Watanabe Costa R, da Silveira JF, Bahia D (2016) Interactions between Trypanosoma cruzi secreted proteins and host cell signaling pathways. Front Microbiol 7:388. https://doi.org/10.3389/fmicb.2016.00388

    Article  PubMed  PubMed Central  Google Scholar 

  2. Pérez-Molina JA, Molina I (2018) Chagas disease. Lancet 391(10115):82–94. https://doi.org/10.1016/S0140-6736(17)31612-4

    Article  PubMed  Google Scholar 

  3. Balouz V, Aguero F, Buscaglia CA (2017) Chagas disease diagnostic applications: present knowledge and future steps. Adv Parasitol 97:1–45. https://doi.org/10.1016/bs.apar.2016.10.001

    Article  CAS  PubMed  Google Scholar 

  4. Thomas MC, Fernández-Villegas A, Carrilero B et al (2012) Characterization of an immunodominant antigenic epitope from Trypanosoma cruzi as a biomarker of chronic Chagas’ disease pathology. Clin Vaccine Immunol 19(2):167–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schnaidman BB, Yoshida N, Gorin PA et al (1986) Cross-reactive polysaccharides from Trypanosoma cruzi and fungi (especially Dactylium dendroides). J Protozool 33(2):186–191

    Article  CAS  PubMed  Google Scholar 

  6. Moure Z, Sulleiro E, Iniesta L et al (2018) The challenge of discordant serology in Chagas disease: the role of two confirmatory techniques in inconclusive cases. Acta Trop 185:144–148. https://doi.org/10.1016/j.actatropica.2018.05.010

    Article  PubMed  Google Scholar 

  7. Balouz V, Melli LJ, Volcovich R et al (2017) The Trypomastigote small surface antigen from Trypanosoma cruzi improves treatment evaluation and diagnosis in pediatric Chagas disease. J Clin Microbiol 55:3444–3453. https://doi.org/10.1128/JCM.01317-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jones K, Versteeg L, Damania A et al (2018) Vaccine-linked chemotherapy improves Benznidazole efficacy for acute Chagas disease. Infect Immun 86(4):e00876–e00817. https://doi.org/10.1128/IAI.00876-17

    Article  PubMed  PubMed Central  Google Scholar 

  9. Biter AB, Weltje S, Hudspeth EM et al (2018) Characterization and stability of Trypanosoma cruzi 24-C4 (Tc24-C4), a candidate antigen for a therapeutic vaccine against Chagas disease. J Pharm Sci 107(5):1468–1473. https://doi.org/10.1016/j.xphs.2017.12.014

    Article  CAS  PubMed  Google Scholar 

  10. Cerny N, Sánchez Alberti A, Bivona AE et al (2016) Coadministration of cruzipain and GM-CSF DNAs, a new immunotherapeutic vaccine against Trypanosoma cruzi infection. Hum Vaccin Immunother 12(2):438–450. https://doi.org/10.1080/21645515.2015.1078044

    Article  PubMed  Google Scholar 

  11. Bivona AE, Sánchez Alberti A, Matos MN et al (2018) Trypanosoma cruzi 80 kDa prolyl oligopeptidase (Tc80) as a novel immunogen for Chagas disease vaccine. PLoS Negl Trop Dis 12(3):e0006384. https://doi.org/10.1371/journal.pntd.0006384

    Article  PubMed  PubMed Central  Google Scholar 

  12. Umezawa ES, Silveira JF (1999) Serological diagnosis of Chagas disease with purified and defined Trypanosoma cruzi antigens. Mem Inst Oswaldo Cruz 94(1):285–288

    Article  PubMed  Google Scholar 

  13. Scharfstein J, Rodrigues MM, Alves CA et al (1983) Trypanosoma cruzi: description of a highly purified surface antigen defined by human antibodies. J Immunol 131(2):972–976

    CAS  PubMed  Google Scholar 

  14. Berrizbeitia M, Ndao M, Bubis J et al (2006) Purified excreted-secreted antigens from Trypanosoma cruzi trypomastigotes as tools for diagnosis of Chagas’ disease. J Clin Microbiol 44(2):291–296. https://doi.org/10.1128/JCM.44.2.291-296.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Santos FL, Celedon PA, Zanchin NI et al (2017) Accuracy of chimeric proteins in the serological diagnosis of chronic Chagas disease – a Phase II study. PLoS Negl Trop Dis 11(3):e0005433. https://doi.org/10.1371/journal.pntd.0005433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rosano GL, Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 5:172. https://doi.org/10.3389/fmicb.2014.00172

    Article  PubMed  PubMed Central  Google Scholar 

  17. De Marchi CR, Di Noia JM, Frasch AC et al (2011) Evaluation of a recombinant Trypanosoma cruzi mucin-like antigen for serodiagnosis of Chagas’ disease. Clin Vaccine Immunol 18(11):1850–1855. https://doi.org/10.1128/CVI.05289-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Seid CA, Jones KM, Pollet J et al (2017) Cysteine mutagenesis improves the production without abrogating antigenicity of a recombinant protein vaccine candidate for human Chagas disease. Hum Vaccin Immunother 13(3):621–633. https://doi.org/10.1080/21645515.2016.1242540

    Article  PubMed  Google Scholar 

  19. Matos MN, Sánchez Alberti A, Morales C et al (2016) A prime-boost immunization with Tc52 N-terminal domain DNA and the recombinant protein expressed in Pichia pastoris protects against Trypanosoma cruzi infection. Vaccine 34(28):3243–3251. https://doi.org/10.1016/j.vaccine.2016.05.011

    Article  CAS  PubMed  Google Scholar 

  20. Almeida IC, Covas DT, Soussumi LM et al (1997) A highly sensitive and specific chemiluminescent enzyme-linked immunosorbent assay for diagnosis of active Trypanosoma cruzi infection. Transfusion 37(8):850–857

    Article  CAS  PubMed  Google Scholar 

  21. Lingg N, Zhang P, Song Z et al (2012) The sweet tooth of biopharmaceuticals: importance of recombinant protein glycosylation analysis. Biotechnol J 7(12):1462–1472. https://doi.org/10.1002/biot.201200078

    Article  CAS  PubMed  Google Scholar 

  22. Quanquin NM, Galaviz C, Fouts DL et al (1999) Immunization of mice with a TolA-like surface protein of Trypanosoma cruzi generates CD4(+) T-cell-dependent parasiticidal activity. Infect Immun 67(9):4603–4612

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Tate CG, Haase J, Baker C et al (2003) Comparison of seven different heterologous protein expression systems for the production of the serotonin transporter. Biochim Biophys Acta 1610(1):141–153. https://doi.org/10.1016/S0005-2736(02)00719-8

    Article  CAS  PubMed  Google Scholar 

  24. Jenkins N, Murphy L, Tyther R (2008) Post-translational modifications of recombinant proteins: significance for biopharmaceuticals. Mol Biotechnol 39(2):113–118. https://doi.org/10.1007/s12033-008-9049-4

    Article  CAS  PubMed  Google Scholar 

  25. Miranda MR, Sayé M, Reigada C et al (2015) Phytomonas: a non-pathogenic trypanosomatid model for functional expression of proteins. Protein Expr Purif 114:44–47. https://doi.org/10.1016/j.pep.2015.06.019

    Article  CAS  PubMed  Google Scholar 

  26. Tetaud E, Lecuix I, Sheldrake T et al (2002) A new expression vector for Crithidia fasciculata and Leishmania. Mol Biochem Parasitol 120(2):195–204

    Article  CAS  PubMed  Google Scholar 

  27. Lee MG, Van der Ploeg LH (1997) Transcription of protein-coding genes in trypanosomes by RNA polymerase I. Annu Rev Microbiol 51:463–489

    Article  CAS  PubMed  Google Scholar 

  28. Kushnir S, Gase K, Breitling R et al (2005) Development of an inducible protein expression system based on the protozoan host Leishmania tarentolae. Protein Expr Purif 42(1):37–46

    Article  CAS  PubMed  Google Scholar 

  29. Klatt S, Konthur Z (2012) Secretory signal peptide modification for optimized antibody-fragment expression-secretion in Leishmania tarentolae. Microb Cell Fact 11:97. https://doi.org/10.1186/1475-2859-11-97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Klatt S, Rohe M, Alagesan K, Kolarich D et al (2013) Production of glycosylated soluble amyloid precursor protein alpha (sAPPalpha) in Leishmania tarentolae. J Proteome Res 12(1):396–403

    Article  CAS  PubMed  Google Scholar 

  31. Ben-Abdallah M, Bondet V, Fauchereau F et al (2011) Production of soluble, active acetyl serotonin methyl transferase in Leishmania tarentolae. Protein Expr Purif 75(1):114–118. https://doi.org/10.1016/j.pep.2010.07.011

    Article  CAS  PubMed  Google Scholar 

  32. Hemayatkar M, Mahboudi F, Majidzadeh-A K et al (2010) Increased expression of recombinant human tissue plasminogen activator in Leishmania tarentolae. Biotechnol J 5(11):1198–1206. https://doi.org/10.1002/biot.201000233

    Article  CAS  PubMed  Google Scholar 

  33. Breitling R, Klingner S, Callewaert N et al (2002) Non-pathogenic trypanosomatid protozoa as a platform for protein research and production. Protein Expr Purif 25:209–218

    Article  CAS  PubMed  Google Scholar 

  34. Puigbo P, Guzmen E, Romeu A et al (2007) OPTIMIZER: a web server for optimizing the codon usage of DNA sequences. Nucleic Acids Res 35:126–131

    Article  Google Scholar 

  35. Vieira J, Messing J (1991) New pUC-derived cloning vectors with different selectable markers and DNA replication origins. Gene 100:189–194

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants to M.T.T.I. and M.P. (PIP 2015-0937 and PICT 2016-1028). M.A.C. acknowledges the financial support of FOCEM (MERCOSUR Structural Convergence Fund, [COF 03/11]).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana Potenza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ferrer, M.J., Wehrendt, D.P., Bonilla, M., Comini, M.A., Tellez-Iñón, M.T., Potenza, M. (2019). Production of Recombinant Trypanosoma cruzi Antigens in Leishmania tarentolae. In: Gómez, K., Buscaglia, C. (eds) T. cruzi Infection. Methods in Molecular Biology, vol 1955. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9148-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9148-8_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9147-1

  • Online ISBN: 978-1-4939-9148-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics