Skip to main content

Isolation and Characterization of Extracellular Vesicles Derived from Trypanosoma cruzi

  • Protocol
  • First Online:
T. cruzi Infection

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1955))

Abstract

Extracellular vesicles (EVs) are heterogeneous membrane-surrounded structures that participate in cellular communications, which comprise exosomes and microvesicles. These vesicles have different biogenesis, and their physiological and pathological roles in chronic and infectious diseases are under constant investigation. In Chagas disease, Trypanosoma cruzi EVs have been described using different approaches. The isolation of T. cruzi-derived EVs has been done mainly using the differential centrifugation technique, and different strategies have been employed for characterization of them. Here, we describe the method to isolate EVs by differential centrifugation and a detection protocol for EVs in T. cruzi-host cell interaction to allow further investigations about this parasite.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van Niel G, D’Angelo G, Raposo G (2018) Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 19:213–228

    Article  Google Scholar 

  2. Maas SLN, Breakefield XO, Weaver AM (2017) Extracellular vesicles: unique intercellular delivery vehicles. Trends Cell Biol 27:172–188

    Article  CAS  Google Scholar 

  3. Silveira JF, Abrahamsohn PA, Colli W (1979) Plasma membrane vesicles isolated from epimastigote forms of Trypanosoma cruzi. Biochim Biophys Acta 550:522–532

    Google Scholar 

  4. Gonçalves MF, Umezawa ES, Katzin AM et al (1991) Trypanosoma cruzi: shedding of surface antigens as membrane vesicles. Exp Parasitol 72:43–53

    Article  Google Scholar 

  5. Ouaissi MA, Dubremetz JF, Kusnierz JP et al (1990) Trypanosoma cruzi: differential expression and distribution of an 85-kDa polypeptide epitope by in vitro developmental stages. Exp Parasitol 71:207–217

    Article  CAS  Google Scholar 

  6. Ouaissi A, Aguirre T, Plumas-Marty B et al (1992) Cloning and sequencing of a 24-kDa Trypanosoma cruzi specific antigen released in association with membrane vesicles and defined by a monoclonal antibody. Biol Cell 75:11–17

    Article  CAS  Google Scholar 

  7. Cestari I, Ansa-Addo E, Deolindo P et al (2012) Trypanosoma cruzi immune evasion mediated by host cell derived microvesicles. J Immunol 188:1942–1952

    Article  CAS  Google Scholar 

  8. Neves RFC, Fernandes ACS (2014) Trypanosoma cruzi-secreted vesicles have acid and alkaline phosphatase activities capable of increasing parasite adhesion and infection. Parasitol Res 113:2961–2972

    Article  Google Scholar 

  9. Ramirez MI, Deolindo P, Messias-Reason IJ et al (2017) Dynamic flux of microvesicles modulate parasite-host cell interaction of Trypanosoma cruzi in eukaryotic cells. Cell Microbiol 19(4):e12672

    Article  Google Scholar 

  10. Wyllie MP, Ramirez MI (2017) Microvesicles released during the interaction between Trypanosoma cruzi TcI and TcII strains and host blood cells inhibit complement system and increase the infectivity of metacyclic forms of host cells in a strain-independent process. Pathog Dis 75:1–10

    Article  Google Scholar 

  11. Ribeiro KS, Vasconcellos CI, Soares RP et al (2018) Proteomic analysis reveals different composition of extracellular vesicles released by two Trypanosoma cruzi strains associated with their distinct interaction with host cells. J Extracell Vesicles 7:1–14

    Google Scholar 

  12. Torrecilhas ACT, Tonelli RR, Pavanelli WR et al (2009) Trypanosoma cruzi: parasite shed vesicles increase heart parasitism and generate an intense inflammatory response. Microbes Infect 11:29–39

    Article  Google Scholar 

  13. Bayer-Santos E, Aguilar-Bonavides C, Rodrigues SL et al (2013) Proteomic analysis of Trypanosoma cruzi secretome: characterization of two populations of extracellular vesicles and soluble proteins. J Proteome Res 12:883–897

    Article  CAS  Google Scholar 

  14. Gaur P, Chaturvedi A (2016) Mining SNPs in extracellular vesicular transcriptome of Trypanosoma cruzi: a step closer to early diagnosis of neglected Chagas disease. PeerJ 1:16

    Google Scholar 

  15. Bautista-López N, Ndao M, Camargo FV et al (2017) Characterization and diagnostic application of Trypanosoma cruzi trypomastigote excreted-secreted antigens shed in extracellular vesicles released from infected mammalian cells. J Clin Microbiol 55:744–758

    Article  Google Scholar 

  16. Bayer-Santos E, Lima FM, Jeronimo CR et al (2014) Characterization of the small RNA content of Trypanosoma cruzi extracellular vesicles. Mol Biochem Parasitol 193:71–74

    Article  CAS  Google Scholar 

  17. Fernandez-Calero T, Garcia-Silva R, Pena A et al (2015) Profiling of small RNA cargo of extracellular vesicles shed by Trypanosoma cruzi reveals a specific extracellular signature. Mol Biochem Parasitol 199:19–28

    Article  CAS  Google Scholar 

  18. Garcia-Silva MR, Cabrera-Cabrera F, Neves RFC et al (2014) Gene expression changes induced by Trypanosoma cruzi shed microvesicles in mammalian host cells: relevance of tRNA-derived halves. Biomed Res Int 2014:1–11

    Article  Google Scholar 

  19. Nogueira PM, Ribeiro K, Silveira ACO et al (2015) Vesicles from different Trypanosoma cruzi strains trigger differential innate and chronic immune responses. J Extracell Vesicles 4:1–16

    Google Scholar 

  20. Chowdhury I, Koo S, Gupta S et al (2017) Gene expression profiling and functional characterization of macrophages in response to circulatory microparticles produced during Trypanosoma cruzi infection and Chagas disease. J Innate Immun 9:203–216

    Article  CAS  Google Scholar 

  21. Gardiner C, Vizio D, Sahoo S et al (2016) Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey. J Extracell Vesicles 5:1–6

    Google Scholar 

  22. Momen-Heravi F (2017) Isolation of extracellular vesicles by ultracentrifugation. Extracellular vesicles: methods and protocols. Methods Mol Biol 1660:25–32

    Article  CAS  Google Scholar 

  23. Furi I, Momen-Heravi F, Szabo G (2017) Extracellular vesicle isolation: present and future. Ann Transl Med 5:263–265

    Article  Google Scholar 

  24. Oliveira-Rodríguez M, Serrano-Pertierra E, García AC et al (2017) Point-of-care detection of extracellular vesicles: sensitivity optimization and multiple-target detection. Biosens Bioelectron 87:38–45. https://doi.org/10.1016/j.bios.2016.08.001

    Article  CAS  PubMed  Google Scholar 

  25. Chernyshev VS, Rachamadugu R, Tseng YH et al (2015) Size and shape characterization of hydrated and desiccated exosomes. Anal Bioanal Chem 407(12):3285–3301

    Article  CAS  Google Scholar 

  26. Nolan JP (2015) Flow cytometry of extracellular vesicles: potential, pitfalls, and prospects. Curr Protoc Cytom 73:13.14.1–13.14.16. https://doi.org/10.1002/0471142956.cy1314s73

    Article  Google Scholar 

  27. Welsh JA, Holloway JA, Wilkinson JS, Englyst NA (2017) Extracellular vesicle flow cytometry analysis and standardization. Front Cell Dev Biol 5:78. https://doi.org/10.3389/fcell.2017.00078

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ramirez MI, Amorim MG, Gadelha C et al (2018) Technical challenges of working with extracellular vesicles. Nanoscale 3:1–26

    Article  Google Scholar 

  29. Andreu Z, Yáñez-Mó M (2014) Tetraspanins in extracellular vesicle formation and function. Front Immunol 5:442. https://doi.org/10.3389/fimmu.2014.00442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kowal J, Arras G, Colombo M et al (2016) Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicles subtypes. PNAS 113:E968–E977

    Article  CAS  Google Scholar 

  31. Willms E, Cabañas C, Mäger I et al (2018) Extracellular vesicle heterogeneity: subpopulations, isolation techniques, and diverse functions in cancer progression. Front Immunol 9:738. https://doi.org/10.3389/fimmu.2018.00738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lotval J, Hill AF, Hochberg F et al (2014) Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles 3:1–7

    Google Scholar 

  33. Mateescu B, Kowal ELK, Balkom BWM (2017) Obstacles and opportunities in the functional analysis of extracellular vesicle RNA – an ISEV position paper. J Extracell Vesicles 6:1–35

    Google Scholar 

  34. Heraszti RA, Didiot MC, Sapp E et al (2016) High-resolution proteomic and lipidomic analysis of exosomes and microvesicles from different cell sources. J Extracell Vesicles 5:3–14

    Google Scholar 

  35. Rosa-Fernandes L, Rocha VB, Carregari VC et al (2017) A perspective on extracellular vesicles proteomics. Front Chem 5:1–19

    Article  Google Scholar 

  36. Lai CP, Tannous BA, Breakefield XO (2014) Noninvasive in vivo monitoring of extracellular vesicles. Methods Mol Biol 1098:249–258

    Article  CAS  Google Scholar 

  37. Witwer KW, Buzás EI, Bemis LT et al (2013) Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles 2:1–26

    Google Scholar 

  38. Tkach M, Théry C (2016) Communication by extracellular vesicles: where we are and where we need to go. Cell 164:1226–1232

    Article  CAS  Google Scholar 

  39. Marcilla A, Martin-Jaular L, Trelis M et al (2014) Extracellular vesicles in parasitic diseases. J Extracell Vesicles 3:1

    Google Scholar 

  40. Gavinho B, Rossi IV, Evan-Osses I et al (2018) A new landscape of host-protozoa interactions involving the extracellular vesicles world. Parasitology 10:1–10. https://doi.org/10.1017/S0031182018001105

    Article  Google Scholar 

  41. Buzás EA, Gardiner C, Lee C et al (2017) Single particle analysis: methods for detection of platelet extracellular vesicles in suspension (excluding flow cytometry). Platelets 3:249–255. https://doi.org/10.1080/09537104.2016.1260704

    Article  CAS  Google Scholar 

  42. Barteneva NS, Fasler-Kan E, Bernimoulin M et al (2013) Circulating microparticles: square the circle. BMC Cell Biol 14:1–21

    Article  Google Scholar 

  43. Wisgrill L, Lamm C, Hartmann J et al (2016) Peripheral blood microvesicles secretion is influenced by storage time, temperature and anticoagulants. Cytometry A 89:663–672

    Article  CAS  Google Scholar 

  44. Shelke GV, Lasser C, Gho YS et al (2014) Importance of exosome depletion protocols to eliminate functional and RNA-containing extracellular vesicles from fetal bovine serum. J Extracell Vesicles 3:24783. https://doi.org/10.3402/jev.v3.24783

    Article  Google Scholar 

  45. Lorincz AM, Timár CI, Marosvári KA et al (2014) Effect of storage on physical and functional properties of extracellular vesicles derived from neutrophilic granulocytes. J Extracell Vesicles 3:1–8

    Google Scholar 

  46. Rupert DLM, Claudio V, Lässer C et al (2017) Methods for the physical characterization and quantification of extracellular vesicles in biological samples. Biochim Biophys Acta 1861:3164–3179. https://doi.org/10.1016/j.bbagen.2016.07.028

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rossi, I.V., Gavinho, B., Ramirez, M.I. (2019). Isolation and Characterization of Extracellular Vesicles Derived from Trypanosoma cruzi. In: Gómez, K., Buscaglia, C. (eds) T. cruzi Infection. Methods in Molecular Biology, vol 1955. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9148-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9148-8_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9147-1

  • Online ISBN: 978-1-4939-9148-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics