A Protocol for the Construction and Curation of Genome-Scale Integrated Metabolic and Regulatory Network Models

  • Sriram ChandrasekaranEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1927)


Genome-scale metabolic network models have been widely used over the last decade and have been shown to successfully predict the metabolic behavior of many organisms. Yet the complexity of metabolic regulation often limits the accuracy of these models. Integrative modeling approaches have recently been developed that combine metabolic and regulatory networks, thereby expanding the capabilities and accuracy of genome-scale modeling. This chapter provides a guide to reconstruct and curate such integrated network models. Specifically, this protocol describes the PROM (Probabilistic Regulation of Metabolism) and GEMINI (Gene Expression and Metabolism Integrated for Network Inference) approaches. PROM is an automated method for the construction of integrated metabolic and transcriptional regulatory network models, while the GEMINI approach curates the integrated network models using transcriptomics and phenomics data. GEMINI represents the first attempt at applying well-established curation tools that exist for metabolic networks to be applied for curating regulatory networks. The integrated network models generated by these approaches enable the mechanistic integration of diverse biological data and can identify novel strategies to engineer cellular metabolism.

Key words

Systems biology Metabolic networks Transcriptional regulatory networks Genome-scale Modeling 


  1. 1.
    Price ND, Papin JA, Schilling CH, Palsson BO (2003) Genome-scale microbial in silico models: the constraints-based approach. Trends Biotechnol 21(4):162–169 doi:S0167779903000301PubMedCrossRefGoogle Scholar
  2. 2.
    Orth JD, Thiele I, Palsson BØ (2010) What is flux balance analysis? Nat Biotechnol 28(3):245–248PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    King ZA, Lloyd CJ, Feist AM, Palsson BO (2015) Next-generation genome-scale models for metabolic engineering. Curr Opin Biotechnol 35:23–29PubMedCrossRefGoogle Scholar
  4. 4.
    Alper H, Miyaoku K, Stephanopoulos G (2005) Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nat Biotechnol 23(5):612–616PubMedCrossRefGoogle Scholar
  5. 5.
    Park JH, Lee KH, Kim TY, Lee SY (2007) Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. Proc Natl Acad Sci 104(19):7797–7802PubMedCrossRefGoogle Scholar
  6. 6.
    Lee KH, Park JH, Kim TY, Kim HU, Lee SY (2007) Systems metabolic engineering of Escherichia coli for l-threonine production. Mol Syst Biol 3(1):149PubMedPubMedCentralGoogle Scholar
  7. 7.
    O’Brien EJ, Monk JM, Palsson BO (2015) Using genome-scale models to predict biological capabilities. Cell 161(5):971–987PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Lewis NE, Nagarajan H, Palsson BO (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods. Nat Rev Microbiol 10(4):291–305. Scholar
  9. 9.
    Herrgard MJ, Lee BS, Portnoy V, Palsson BO (2006) Integrated analysis of regulatory and metabolic networks reveals novel regulatory mechanisms in Saccharomyces cerevisiae. Genome Res 16(5):627–635. gr.4083206PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Farmer WR, Liao JC (2000) Improving lycopene production in Escherichia coli by engineering metabolic control. Nat Biotechnol 18(5):533–537PubMedCrossRefGoogle Scholar
  11. 11.
    Covert MW, Schilling CH, Palsson B (2001) Regulation of gene expression in flux balance models of metabolism. J Theor Biol 213(1):73–88. S0022-5193(01)92405-1PubMedCrossRefGoogle Scholar
  12. 12.
    Covert MW, Knight EM, Reed JL, Herrgard MJ, Palsson BO (2004) Integrating high-throughput and computational data elucidates bacterial networks. Nature 429(6987):92–96. nature02456PubMedCrossRefGoogle Scholar
  13. 13.
    Chandrasekaran S, Price ND (2010) Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and mycobacterium tuberculosis. Proc Natl Acad Sci U S A 107(41):17845–17850. 1005139107PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Carrera J, Estrela R, Luo J, Rai N, Tsoukalas A, Tagkopoulos I (2014) An integrative, multi-scale, genome-wide model reveals the phenotypic landscape of Escherichia coli. Mol Syst Biol 10(7):735PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    O'brien EJ, Lerman JA, Chang RL, Hyduke DR, Palsson BØ (2013) Genome-scale models of metabolism and gene expression extend and refine growth phenotype prediction. Mol Syst Biol 9(1):693PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Lee S, Zhang C, Kilicarslan M, Piening BD, Bjornson E, Hallström BM, Groen AK, Ferrannini E, Laakso M, Snyder M (2016) Integrated network analysis reveals an association between plasma mannose levels and insulin resistance. Cell Metab 24(1):172–184PubMedCrossRefGoogle Scholar
  17. 17.
    Shlomi T, Eisenberg Y, Sharan R, Ruppin E (2007) A genome-scale computational study of the interplay between transcriptional regulation and metabolism. Mol Syst Biol 3:101. msb4100141PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Imam S, Schäuble S, Brooks AN, Baliga NS, Price ND (2015) Data-driven integration of genome-scale regulatory and metabolic network models. Front Microbiol 6:409PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Chandrasekaran S (2014) Predicting phenotype from genotype through reconstruction and integrative modeling of metabolic and regulatory networks. In: A systems theoretic approach to systems and synthetic biology I: models and system characterizations. Springer, The Netherlands, pp 307–325Google Scholar
  20. 20.
    Simeonidis E, Chandrasekaran S, Price ND (2013) A guide to integrating transcriptional regulatory and metabolic networks using PROM (probabilistic regulation of metabolism). Methods Mol Biol 985:103–112PubMedCrossRefGoogle Scholar
  21. 21.
    Chandrasekaran S, Price ND (2013) Metabolic constraint-based refinement of transcriptional regulatory networks. PLoS Comput Biol 9(12):e1003370PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Kumar VS, Maranas CD (2009) GrowMatch: an automated method for reconciling in silico/in vivo growth predictions. PLoS Comput Biol 5(3):e1000308. Scholar
  23. 23.
    Thiele I, Palsson BØ (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc 5(1):93–121PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Feist AM, Herrgård MJ, Thiele I, Reed JL, Palsson BØ (2009) Reconstruction of biochemical networks in microorganisms. Nat Rev Microbiol 7(2):129–143PubMedCrossRefGoogle Scholar
  25. 25.
    Blais EM, Chavali AK, Papin JA (2013) Linking genome-scale metabolic modeling and genome annotation. Methods Mol Biol 985:61–83PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Mahadevan R, Schilling CH (2003) The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab Eng 5(4):264–276 doi:S1096717603000582PubMedCrossRefGoogle Scholar
  27. 27.
    Bonneau R (2008) Learning biological networks: from modules to dynamics. Nat Chem Biol 4(11):658–664. Scholar
  28. 28.
    Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J, Cottarel G, Kasif S, Collins JJ, Gardner TS (2007) Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol 5(1):e8. 06-PLBI-RA-0740R3PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Dalla Favera R, Califano A (2006) ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 7(Suppl 1):S7. 1471-2105-7-S1-S7PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Chandrasekaran S, Ament SA, Eddy JA, Rodriguez-Zas SL, Schatz BR, Price ND, Robinson GE (2011) Behavior-specific changes in transcriptional modules lead to distinct and predictable neurogenomic states. Proc Natl Acad Sci U S A 108(44):18020–18025PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Karr JR, Sanghvi JC, Macklin DN, Gutschow MV, Jacobs JM, Bolival B Jr, Assad-Garcia N, Glass JI, Covert MW (2012) A whole-cell computational model predicts phenotype from genotype. Cell 150(2):389–401. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringUniversity of Michigan at Ann ArborAnn ArborUSA

Personalised recommendations