Skip to main content

Furan Cross-Linking Technology for Investigating GPCR–Ligand Interactions

  • Protocol
  • First Online:
G Protein-Coupled Receptor Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1947))

Abstract

Interactions between G protein-coupled receptors and their ligands hold extensive potential for drug discovery. Studying these interactions poses technical problems due to their transient nature and the inherent difficulties when working with G protein-coupled receptors (GPCR) that are only functional in a membrane setting. Here, we describe the use of a furan-based chemical cross-linking methodology to achieve selective covalent coupling between a furan-modified peptide ligand and its native GPCR present on the surface of living cells under normal cell culture conditions. This methodology relies on the oxidation of the furan moiety, which can be achieved by either addition of an external oxidation signal or by the reactive oxygen species produced by the cell. The cross-linked ligand–GPCR complex is subsequently detected by Western blotting based on the biotin label that is incorporated in the peptide ligand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang W, Manglik A, Venkatakrishnan AJ, Laeremans T, Feinberg EN, Sanborn AL, Kato HE, Livingston KE, Thorsen TS, Kling RC, Granier S, Gmeiner P, Husbands SM, Traynor JR, Weis WI, Steyaert J, Dror RO, Kobilka BK (2015) Structural insights into μ-opioid receptor activation. Nature 524:315–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Stevens RC, Cherezov V, Katritch V, Abagyan R, Kuhn P, Rosen H, Wüthrich K (2013) The GPCR network: a large-scale collaboration to determine human GPCR structure and function. Nat Rev Drug Discov 12(1):25–34. https://doi.org/10.1038/nrd3859

    Article  CAS  PubMed  Google Scholar 

  3. Fredriksson R, Lagerström MC, Lundin LG, Schiöth HB (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63(6):1256–1272. https://doi.org/10.1124/mol.63.6.1256

    Article  CAS  PubMed  Google Scholar 

  4. Shemesh R, Toporik A, Levine Z, Hecht I, Rotman G, Wool A, Dahary D, Gofer E, Kliger Y, Soffer MA, Rosenberg A, Eshel D, Cohen Y (2008) Discovery and validation of novel peptide agonists for G-protein-coupled receptors. J Biol Chem 283:34643–34649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sriram K, Insel PA (2018) GPCRs as targets for approved drugs: How many targets and how many drugs? Mol Pharmacol. https://doi.org/10.1124/mol.117.111062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hauser AS, Chavali S, Masuho I, Jahn LJ, Martemyanov KA, Gloriam DE, Babu MM (2018) Pharmacogenomics of GPCR drug targets. Cell 172(1–2):41–54.e19. https://doi.org/10.1016/j.cell.2017.11.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Corgiat BA, Nordman JC, Kabbani N (2014) Chemical crosslinkers enhance detection of receptor interactomes. Front Pharmacol 4:171. https://doi.org/10.3389/fphar.2013.00171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Grunbeck A, Sakmar TP (2013) Probing G protein-coupled receptor-ligand interactions with targeted photoactivatable cross-linkers. Biochemistry 52(48):8625–8632. https://doi.org/10.1021/bi401300y

    Article  CAS  PubMed  Google Scholar 

  9. Scalabrin M, Dixit SM, Makshood MM, Krzemien CE, Fabris D (2018) Bifunctional cross-linking approaches for mass spectrometry-based investigation of nucleic acids and protein-nucleic acid assemblies. Methods 144:64–78. https://doi.org/10.1016/j.ymeth.2018.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Carrette LLG, GysselsE D, Laet N, Madder A (2016) Furan oxidation based cross-linking: a new approach for the study and targeting of nucleic acid and protein interactions. Chem Commun 52:1539–1554. https://doi.org/10.1039/c5cc08766j

    Article  CAS  Google Scholar 

  11. Op de Beeck M, Madder A (2012) Sequence specific furan based DNA crosslinking with visual light. J Am Chem Soc 134(26):10737–10740

    Article  Google Scholar 

  12. Stevens K, Madder A (2009) Furan-modified oligonucleotides for fast, high-yielding and site-selective DNA inter-strand cross-linking with non-modified complements. Nucleic Acids Res 37(5):1555–1565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Halila S, Velasco T, De Clercq P, Madder A (2005) Fine-tuning furan toxicity: fast and quantitative DNA interchain cross-link formation upon selective oxidation of a furan containing oligonucleotide. Chem Commun 7:936–938

    Article  Google Scholar 

  14. Vannecke W, Ampe C, Van Troys M, Beltramo M, Madder A (2017) Cross-linking furan-modified kisspeptin-10 to the KISS receptor. ACS Chem Biol 12(8):2191–2200. https://doi.org/10.1021/acschembio.7b00396

    Article  CAS  PubMed  Google Scholar 

  15. https://www.licor.com/bio/products/reagents/irdye/streptavidin/. Accessed 19 May 2018

  16. García-Martin F, Albericio F (2008) Solid supports for the synthesis of peptides–from the first resin used to the most sophisticated in the market. Chem Today 26:29–34

    Google Scholar 

  17. Redmond RW, Gamlin JN (1999) A compilation of singlet oxygen yields from biologically relevant molecules. Photochem Photobiol 70:391–475

    Article  CAS  PubMed  Google Scholar 

  18. Kochevar IE, Lambert CR, Lynch MC, Tedesco AC (1996) Comparison of photosensitized plasma membrane damage caused by singlet oxygen and free radicals. Biochim Biophys Acta 1280:223–230

    Article  PubMed  Google Scholar 

  19. Antonatou E, Hoogewijs K, Kalaitzakis D, Baudot A, Vassilikogiannakis G (2016) Madder a singlet oxygen-induced furan oxidation for site-specific and chemoselective peptide ligation. Chem Eur J 22(25):8457–8461. https://doi.org/10.1002/chem.201601113

    Article  CAS  PubMed  Google Scholar 

  20. Rabilloud T, Adessi C, Giraudel A, Lunardi J (1997) Improvement of the solubilization of proteins in two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 18(3–4):307–316

    Article  CAS  PubMed  Google Scholar 

  21. He F (2011) Laemmli-SDS-PAGE. Bio Protocol Bio101:e80. https://doi.org/10.21769/BioProtoc.80

    Article  Google Scholar 

  22. Misu R, Oishi S, Setsuda S, Noguchi T, Kaneda M, Ohno H, Evans B, Navenot JM, Peiper SC, Fujii N (2013) Characterization of the receptor binding residues of kisspeptins by positional scanning using peptide photoaffinity probes. Bioorg Med Chem Lett 23:2628–2631

    Article  CAS  PubMed  Google Scholar 

  23. Alegria-Schaffer A (2014) Western blotting using chemiluminescent substrates. Methods Enzymol 541:251–259. https://doi.org/10.1016/B978-0-12-420119-4.00019-7

    Article  CAS  PubMed  Google Scholar 

  24. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annemieke Madder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Van Troys, M., Vannecke, W., Ampe, C., Madder, A. (2019). Furan Cross-Linking Technology for Investigating GPCR–Ligand Interactions. In: Tiberi, M. (eds) G Protein-Coupled Receptor Signaling. Methods in Molecular Biology, vol 1947. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9121-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9121-1_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9120-4

  • Online ISBN: 978-1-4939-9121-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics