Skip to main content

Methods for Natural Transformation in Acinetobacter baumannii

  • Protocol
  • First Online:
Acinetobacter baumannii

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1946))

Abstract

The genomes of Acinetobacter baumannii tell us stories about horizontal gene transfer (HGT) events that steadily drive the evolution of this nosocomial pathogen toward multidrug resistance. Natural transformation competence constitutes one of the several possible pathways that mediate HGT in A. baumannii. Here, we describe and discuss the methods for studying DNA uptake in A. baumannii via natural transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Da Silva GJ, Domingues S (2016) Insights on the horizontal gene transfer of carbapenemase determinants in the opportunistic pathogen Acinetobacter baumannii. Microorganisms 4(3). https://doi.org/10.3390/microorganisms4030029

    Article  PubMed Central  Google Scholar 

  2. Fournier PE, Vallenet D, Barbe V, Audic S, Ogata H, Poirel L, Richet H, Robert C, Mangenot S, Abergel C, Nordmann P, Weissenbach J, Raoult D, Claverie JM (2006) Comparative genomics of multidrug resistance in Acinetobacter baumannii. PLoS Genet 2(1):e7. https://doi.org/10.1371/journal.pgen.0020007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Liu F, Zhu Y, Yi Y, Lu N, Zhu B, Hu Y (2014) Comparative genomic analysis of Acinetobacter baumannii clinical isolates reveals extensive genomic variation and diverse antibiotic resistance determinants. BMC Genomics 15:1163. https://doi.org/10.1186/1471-2164-15-1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wright MS, Haft DH, Harkins DM, Perez F, Hujer KM, Bajaksouzian S, Benard MF, Jacobs MR, Bonomo RA, Adams MD (2014) New insights into dissemination and variation of the health care-associated pathogen Acinetobacter baumannii from genomic analysis. MBio 5(1):e00963–e00913. https://doi.org/10.1128/mBio.00963-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jung J, Madsen EL, Jeon CO, Park W (2011) Comparative genomic analysis of Acinetobacter oleivorans DR1 to determine strain-specific genomic regions and gentisate biodegradation. Appl Environ Microbiol 77(20):7418–7424. https://doi.org/10.1128/aem.05231-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hassan A, Naz A, Obaid A, Paracha RZ, Naz K, Awan FM, Muhmmad SA, Janjua HA, Ahmad J, Ali A (2016) Pangenome and immuno-proteomics analysis of Acinetobacter baumannii strains revealed the core peptide vaccine targets. BMC Genomics 17(1):732. https://doi.org/10.1186/s12864-016-2951-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zarrilli R, Pournaras S, Giannouli M, Tsakris A (2013) Global evolution of multidrug-resistant Acinetobacter baumannii clonal lineages. Int J Antimicrob Agents 41(1):11–19. https://doi.org/10.1016/j.ijantimicag.2012.09.008

    Article  CAS  PubMed  Google Scholar 

  8. Chatterjee S, Mondal A, Mitra S, Basu S (2017) Acinetobacter baumannii transfers the blaNDM-1 gene via outer membrane vesicles. J Antimicrob Chemother 72(8):2201–2207. https://doi.org/10.1093/jac/dkx131

    Article  CAS  PubMed  Google Scholar 

  9. Rumbo C, Fernandez-Moreira E, Merino M, Poza M, Mendez JA, Soares NC, Mosquera A, Chaves F, Bou G (2011) Horizontal transfer of the OXA-24 carbapenemase gene via outer membrane vesicles: a new mechanism of dissemination of carbapenem resistance genes in Acinetobacter baumannii. Antimicrob Agents Chemother 55(7):3084–3090. https://doi.org/10.1128/aac.00929-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pande S, Shitut S, Freund L, Westermann M, Bertels F, Colesie C, Bischofs IB, Kost C (2015) Metabolic cross-feeding via intercellular nanotubes among bacteria. Nat Commun 6:6238. https://doi.org/10.1038/ncomms7238

    Article  CAS  PubMed  Google Scholar 

  11. Dubey GP, Ben-Yehuda S (2011) Intercellular nanotubes mediate bacterial communication. Cell 144(4):590–600. https://doi.org/10.1016/j.cell.2011.01.015

    Article  CAS  PubMed  Google Scholar 

  12. Vaneechoutte M, Young DM, Ornston LN, De Baere T, Nemec A, Van Der Reijden T, Carr E, Tjernberg I, Dijkshoorn L (2006) Naturally transformable Acinetobacter sp. strain ADP1 belongs to the newly described species Acinetobacter baylyi. Appl Environ Microbiol 72(1):932–936. https://doi.org/10.1128/aem.72.1.932-936.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Juni E, Janik A (1969) Transformation of Acinetobacter calcoaceticus (Bacterium anitratum). J Bacteriol 98(1):281–288

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Overballe-Petersen S, Harms K, Orlando LA, Mayar JV, Rasmussen S, Dahl TW, Rosing MT, Poole AM, Sicheritz-Ponten T, Brunak S, Inselmann S, de Vries J, Wackernagel W, Pybus OG, Nielsen R, Johnsen PJ, Nielsen KM, Willerslev E (2013) Bacterial natural transformation by highly fragmented and damaged DNA. Proc Natl Acad Sci U S A 110(49):19860–19865. https://doi.org/10.1073/pnas.1315278110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Averhoff B, Friedrich A (2003) Type IV pili-related natural transformation systems: DNA transport in mesophilic and thermophilic bacteria. Arch Microbiol 180(6):385–393. https://doi.org/10.1007/s00203-003-0616-6

    Article  CAS  PubMed  Google Scholar 

  16. Friedrich A, Hartsch T, Averhoff B (2001) Natural transformation in mesophilic and thermophilic bacteria: identification and characterization of novel, closely related competence genes in Acinetobacter sp. strain BD413 and Thermus thermophilus HB27. Appl Environ Microbiol 67(7):3140–3148. https://doi.org/10.1128/aem.67.7.3140-3148.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Metzgar D, Bacher JM, Pezo V, Reader J, Doring V, Schimmel P, Marliere P, de Crecy-Lagard V (2004) Acinetobacter sp. ADP1: an ideal model organism for genetic analysis and genome engineering. Nucleic Acids Res 32(19):5780–5790. https://doi.org/10.1093/nar/gkh881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Leong CG, Bloomfield RA, Boyd CA, Dornbusch AJ, Lieber L, Liu F, Owen A, Slay E, Lang KM, Lostroh CP (2017) The role of core and accessory type IV pilus genes in natural transformation and twitching motility in the bacterium Acinetobacter baylyi. PLoS One 12(8):e0182139. https://doi.org/10.1371/journal.pone.0182139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ramirez MS, Don M, Merkier AK, Bistue AJ, Zorreguieta A, Centron D, Tolmasky ME (2010) Naturally competent Acinetobacter baumannii clinical isolate as a convenient model for genetic studies. J Clin Microbiol 48(4):1488–1490. https://doi.org/10.1128/jcm.01264-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wilharm G, Piesker J, Laue M, Skiebe E (2013) DNA uptake by the nosocomial pathogen Acinetobacter baumannii occurs during movement along wet surfaces. J Bacteriol 195(18):4146–4153. https://doi.org/10.1128/jb.00754-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wilharm G, Skiebe E, Higgins PG, Poppel MT, Blaschke U, Leser S, Heider C, Heindorf M, Brauner P, Jackel U, Bohland K, Cuny C, Lopinska A, Kaminski P, Kasprzak M, Bochenski M, Ciebiera O, Tobolka M, Zolnierowicz KM, Siekiera J, Seifert H, Gagne S, Salcedo SP, Kaatz M, Layer F, Bender JK, Fuchs S, Semmler T, Pfeifer Y, Jerzak L (2017) Relatedness of wildlife and livestock avian isolates of the nosocomial pathogen Acinetobacter baumannii to lineages spread in hospitals worldwide. Environ Microbiol 19(10):4349–4364. https://doi.org/10.1111/1462-2920.13931

    Article  CAS  PubMed  Google Scholar 

  22. Yoon EJ, Chabane YN, Goussard S, Snesrud E, Courvalin P, De E, Grillot-Courvalin C (2015) Contribution of resistance-nodulation-cell division efflux systems to antibiotic resistance and biofilm formation in Acinetobacter baumannii. MBio 6(2). https://doi.org/10.1128/mBio.00309-15

  23. Gallagher LA, Ramage E, Weiss EJ, Radey M, Hayden HS, Held KG, Huse HK, Zurawski DV, Brittnacher MJ, Manoil C (2015) Resources for genetic and genomic analysis of emerging pathogen Acinetobacter baumannii. J Bacteriol 197(12):2027–2035. https://doi.org/10.1128/jb.00131-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Barker J, Maxted H (1975) Observations on the growth and movement of Acinetobacter on semi-solid media. J Med Microbiol 8(3):443–446. https://doi.org/10.1099/00222615-8-3-443

    Article  CAS  PubMed  Google Scholar 

  25. LAUTROP H (1961) Bacterium anitratum transferred to the genus Cytophaga. Int J Syst Evol Microbiol 11(3):107–108

    Google Scholar 

  26. Clemmer KM, Bonomo RA, Rather PN (2011) Genetic analysis of surface motility in Acinetobacter baumannii. Microbiology 157(Pt 9):2534–2544. https://doi.org/10.1099/mic.0.049791-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Eijkelkamp BA, Stroeher UH, Hassan KA, Papadimitrious MS, Paulsen IT, Brown MH (2011) Adherence and motility characteristics of clinical Acinetobacter baumannii isolates. FEMS Microbiol Lett 323(1):44–51. https://doi.org/10.1111/j.1574-6968.2011.02362.x

    Article  CAS  PubMed  Google Scholar 

  28. Harding CM, Tracy EN, Carruthers MD, Rather PN, Actis LA, Munson RS Jr (2013) Acinetobacter baumannii strain M2 produces type IV pili which play a role in natural transformation and twitching motility but not surface-associated motility. MBio 4 4(4). https://doi.org/10.1128/mBio.00360-13

  29. Antunes LC, Imperi F, Carattoli A, Visca P (2011) Deciphering the multifactorial nature of Acinetobacter baumannii pathogenicity. PLoS One 6(8):e22674. https://doi.org/10.1371/journal.pone.0022674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Skiebe E, de Berardinis V, Morczinek P, Kerrinnes T, Faber F, Lepka D, Hammer B, Zimmermann O, Ziesing S, Wichelhaus TA, Hunfeld KP, Borgmann S, Grobner S, Higgins PG, Seifert H, Busse HJ, Witte W, Pfeifer Y, Wilharm G (2012) Surface-associated motility, a common trait of clinical isolates of Acinetobacter baumannii, depends on 1,3-diaminopropane. Int J Med Microbiol 302(3):117–128. https://doi.org/10.1016/j.ijmm.2012.03.003

    Article  CAS  PubMed  Google Scholar 

  31. Salzer R, Kern T, Joos F, Averhoff B (2016) The Thermus thermophilus comEA/comEC operon is associated with DNA binding and regulation of the DNA translocator and type IV pili. Environ Microbiol 18(1):65–74. https://doi.org/10.1111/1462-2920.12820

    Article  CAS  PubMed  Google Scholar 

  32. Heindorf M, Kadari M, Heider C, Skiebe E, Wilharm G (2014) Impact of Acinetobacter baumannii superoxide dismutase on motility, virulence, oxidative stress resistance and susceptibility to antibiotics. PLoS One 9(7):e101033. https://doi.org/10.1371/journal.pone.0101033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hunger M, Schmucker R, Kishan V, Hillen W (1990) Analysis and nucleotide sequence of an origin of DNA replication in Acinetobacter calcoaceticus and its use for Escherichia coli shuttle plasmids. Gene 87(1):45–51

    Article  CAS  PubMed  Google Scholar 

  34. Bryksin AV, Matsumura I (2010) Rational design of a plasmid origin that replicates efficiently in both gram-positive and gram-negative bacteria. PLoS One 5(10):e13244. https://doi.org/10.1371/journal.pone.0013244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tipton KA, Dimitrova D, Rather PN (2015) Phase-variable control of multiple phenotypes in Acinetobacter baumannii strain AB5075. J Bacteriol 197(15):2593–2599. https://doi.org/10.1128/jb.00188-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tipton KA, Rather PN (2016) An ompR/envZ two-component system ortholog regulates phase variation, osmotic tolerance, motility, and virulence in Acinetobacter baumannii strain AB5075. J Bacteriol. https://doi.org/10.1128/jb.00705-16

  37. Godeux A-S, Lupo A, Haenni M, Guette-Marquet S, Wilharm G, Laaberki M-H, Charpentier X (2018) Fluorescence-based detection of natural transformation in drug resistant Acinetobacter baumannii. bioRxiv. https://doi.org/10.1101/262311

  38. Quinn B, Traglia GM, Nguyen M, Martinez J, Liu C, Fernandez JS, Ramirez MS (2018) Effect of host human products on natural transformation in Acinetobacter baumannii. Curr Microbiol. https://doi.org/10.1007/s00284-017-1417-5

  39. Traglia GM, Quinn B, Schramm ST, Soler-Bistue A, Ramirez MS (2016) Serum albumin and Ca2+ are natural competence inducers in the human pathogen Acinetobacter baumannii. Antimicrob Agents Chemother 60(8):4920–4929. https://doi.org/10.1128/aac.00529-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Leong CG, Boyd CM, Roush KS, Tenente R, Lang KM, Lostroh CP (2017) Succinate, iron chelation, and monovalent cations affect the transformation efficiency of Acinetobacter baylyi ATCC 33305 during growth in complex media. Can J Microbiol 63(10):851–856. https://doi.org/10.1139/cjm-2017-0393

    Article  CAS  PubMed  Google Scholar 

  41. Repizo GD, Viale AM, Borges V, Cameranesi MM, Taib N, Espariz M, Brochier-Armanet C, Gomes JP, Salcedo SP (2017) The environmental Acinetobacter baumannii isolate DSM30011 reveals clues into the preantibiotic era genome diversity, virulence potential, and niche range of a predominant nosocomial pathogen. Genome Biol Evol 9(9):2292–2307. https://doi.org/10.1093/gbe/evx162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

G.W. acknowledges financial support from the Deutsche Forschungsgemeinschaft (DFG-FOR 2251, WI 3272/3-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gottfried Wilharm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wilharm, G., Skiebe, E. (2019). Methods for Natural Transformation in Acinetobacter baumannii. In: Biswas, I., Rather, P. (eds) Acinetobacter baumannii. Methods in Molecular Biology, vol 1946. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9118-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9118-1_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9117-4

  • Online ISBN: 978-1-4939-9118-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics