Skip to main content

Testing Metal Sensitivity of A. baumannii Strains: Survival in Copper-Supplemented Liquid Media and on Copper-Containing Surfaces

  • Protocol
  • First Online:
Acinetobacter baumannii

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1946))

Abstract

This chapter describes protocols for determining A. baumannii isolates’ overall levels of sensitivity to heavy metals; copper is used as a model heavy metal. Measurements of the ability of strains to grow in the presence of various concentrations of copper in liquid media and on copper-containing surfaces are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ladomersky E, Petris MJ (2015) Copper tolerance and virulence in bacteria. Metallomics 7(6):957–964. https://doi.org/10.1039/c4mt00327f

    Article  CAS  PubMed  Google Scholar 

  2. Djoko KY, Ong CL, Walker MJ, McEwan AG (2015) The role of copper and zinc toxicity in innate immune defense against bacterial pathogens. J Biol Chem 290(31):18954–18961. https://doi.org/10.1074/jbc.R115.647099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Peleg AY, Seifert H, Paterson DL (2008) Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev 21(3):538–582. https://doi.org/10.1128/CMR.00058-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Halachev MR, Chan JZ, Constantinidou CI, Cumley N, Bradley C, Smith-Banks M, Oppenheim B, Pallen MJ (2014) Genomic epidemiology of a protracted hospital outbreak caused by multidrug-resistant Acinetobacter baumannii in Birmingham, England. Genome Med 6(11):70. https://doi.org/10.1186/s13073-014-0070-x

    Article  PubMed  PubMed Central  Google Scholar 

  5. Schmidt MG, Attaway HH, Sharpe PA, John J Jr, Sepkowitz KA, Morgan A, Fairey SE, Singh S, Steed LL, Cantey JR, Freeman KD, Michels HT, Salgado CD (2012) Sustained reduction of microbial burden on common hospital surfaces through introduction of copper. J Clin Microbiol 50(7):2217–2223. https://doi.org/10.1128/JCM.01032-12

    Article  PubMed  PubMed Central  Google Scholar 

  6. Salgado CD, Sepkowitz KA, John JF, Cantey JR, Attaway HH, Freeman KD, Sharpe PA, Michels HT, Schmidt MG (2013) Copper surfaces reduce the rate of healthcare-acquired infections in the intensive care unit. Infect Control Hosp Epidemiol 34(5):479–486. https://doi.org/10.1086/670207

    Article  PubMed  Google Scholar 

  7. Schmidt MG, Attaway HH, Fairey SE, Steed LL, Michels HT, Salgado CD (2013) Copper continuously limits the concentration of bacteria resident on bed rails within the intensive care unit. Infect Control Hosp Epidemiol 34(5):530–533. https://doi.org/10.1086/670224

    Article  PubMed  Google Scholar 

  8. Schmidt MG, von Dessauer B, Benavente C, Benadof D, Cifuentes P, Elgueta A, Duran C, Navarrete MS (2016) Copper surfaces are associated with significantly lower concentrations of bacteria on selected surfaces within a pediatric intensive care unit. Am J Infect Control 44(2):203–209. https://doi.org/10.1016/j.ajic.2015.09.008

    Article  CAS  PubMed  Google Scholar 

  9. von Dessauer B, Navarrete MS, Benadof D, Benavente C, Schmidt MG (2016) Potential effectiveness of copper surfaces in reducing health care-associated infection rates in a pediatric intensive and intermediate care unit: a nonrandomized controlled trial. Am J Infect Control. https://doi.org/10.1016/j.ajic.2016.03.053

    Article  CAS  PubMed  Google Scholar 

  10. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  11. Warnes SL, Caves V, Keevil CW (2012) Mechanism of copper surface toxicity in Escherichia coli O157:H7 and Salmonella involves immediate membrane depolarization followed by slower rate of DNA destruction which differs from that observed for Gram-positive bacteria. Environ Microbiol 14(7):1730–1743. https://doi.org/10.1111/j.1462-2920.2011.02677.x

    Article  CAS  PubMed  Google Scholar 

  12. Warnes SL, Green SM, Michels HT, Keevil CW (2010) Biocidal efficacy of copper alloys against pathogenic enterococci involves degradation of genomic and plasmid DNAs. Appl Environ Microbiol 76(16):5390–5401. https://doi.org/10.1128/AEM.03050-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Williams CL, Neu HM, Gilbreath JJ, Michel SL, Zurawski DV, Merrell DS (2016) Characterization of copper resistance in Acinetobacter baumannii. Appl Environ Microbiol 82(20):6174–6188. https://doi.org/10.1128/AEM.01813-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tipton KA, Dimitrova D, Rather PN (2015) Phase-variable control of multiple phenotypes in Acinetobacter baumannii strain AB5075. J Bacteriol 197(15):2593–2599. https://doi.org/10.1128/JB.00188-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Eser OK, Ergin A, Hascelik G (2015) Antimicrobial activity of copper alloys against invasive multidrug-resistant nosocomial pathogens. Curr Microbiol 71(2):291–295. https://doi.org/10.1007/s00284-015-0840-8

    Article  CAS  PubMed  Google Scholar 

  16. Espirito Santo C, Taudte N, Nies DH, Grass G (2008) Contribution of copper ion resistance to survival of Escherichia coli on metallic copper surfaces. Appl Environ Microbiol 74(4):977–986. https://doi.org/10.1128/AEM.01938-07

    Article  CAS  PubMed  Google Scholar 

  17. Souli M, Galani I, Plachouras D, Panagea T, Armaganidis A, Petrikkos G, Giamarellou H (2013) Antimicrobial activity of copper surfaces against carbapenemase-producing contemporary Gram-negative clinical isolates. J Antimicrob Chemother 68(4):852–857. https://doi.org/10.1093/jac/dks473

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Disclaimer and Funding: The opinions or assertions contained herein are the private ones of the authors and are not to be construed as official or reflecting the views of the Department of Defense, the Uniformed Services University of the Health Sciences, or any other agency of the US Government.

Work in the Merrell lab is supported by funds from the NIH and DoD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Scott Merrell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Williams, C.L., Merrell, D.S. (2019). Testing Metal Sensitivity of A. baumannii Strains: Survival in Copper-Supplemented Liquid Media and on Copper-Containing Surfaces. In: Biswas, I., Rather, P. (eds) Acinetobacter baumannii. Methods in Molecular Biology, vol 1946. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9118-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9118-1_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9117-4

  • Online ISBN: 978-1-4939-9118-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics