Skip to main content

Using rxncon to Develop Rule-Based Models

  • Protocol
  • First Online:
Modeling Biomolecular Site Dynamics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1945))

Abstract

We present a protocol for building, validating, and simulating models of signal transduction networks. These networks are challenging modeling targets due to the combinatorial complexity and sparse data, which have made it a major challenge even to formalize the current knowledge. To address this, the community has developed methods to model biomolecular reaction networks based on site dynamics. The strength of this approach is that reactions and states can be defined at variable resolution, which makes it possible to adapt the model resolution to the empirical data. This improves both scalability and accuracy, making it possible to formalize large models of signal transduction networks. Here, we present a method to build and validate large models of signal transduction networks. The workflow is based on rxncon, the reaction-contingency language. In a five-step process, we create a mechanistic network model, convert it into an executable Boolean model, use the Boolean model to evaluate and improve the network, and finally export the rxncon model into a rule-based format. We provide an introduction to the rxncon language and an annotated, step-by-step protocol for the workflow. Finally, we create a small model of the insulin signaling pathway to illustrate the protocol, together with some of the challenges—and some of their solutions—in modeling signal transduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blinov ML, Faeder JR, Goldstein B, Hlavacek WS (2004) BioNetGen: software for rule-based modeling of signal transduction based on the interactions of molecular domains. Bioinformatics 20(17):3289–3291. https://doi.org/10.1093/bioinformatics/bth378

    Article  CAS  PubMed  Google Scholar 

  2. Danos V, Feret J, Fontana W, Harmer R, Krivine J (2007) Rule-based modelling of cellular signalling. In: Caires L, Vasconcelos VT (eds) CONCUR 2007 – Concurrency Theory: 18th International Conference, CONCUR 2007, Lisbon, Portugal, September 3–8, 2007. Proceedings. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 17–41. https://doi.org/10.1007/978-3-540-74407-8_3

    Chapter  Google Scholar 

  3. Harris LA, Hogg JS, Tapia JJ, Sekar JA, Gupta S, Korsunsky I, Arora A, Barua D, Sheehan RP, Faeder JR (2016) BioNetGen 2.2: advances in rule-based modeling. Bioinformatics 32(21):3366–3368. https://doi.org/10.1093/bioinformatics/btw469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hlavacek WS, Faeder JR, Blinov ML, Perelson AS, Goldstein B (2003) The complexity of complexes in signal transduction. Biotechnol Bioeng 84(7):783–794. https://doi.org/10.1002/bit.10842

    Article  CAS  PubMed  Google Scholar 

  5. Koschorreck M, Conzelmann H, Ebert S, Ederer M, Gilles ED (2007) Reduced modeling of signal transduction – a modular approach. BMC Bioinformatics 8:336. https://doi.org/10.1186/1471-2105-8-336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Borisov NM, Chistopolsky AS, Faeder JR, Kholodenko BN (2008) Domain-oriented reduction of rule-based network models. IET Syst Biol 2(5):342–351. https://doi.org/10.1049/iet-syb:20070081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Conzelmann H, Fey D, Gilles ED (2008) Exact model reduction of combinatorial reaction networks. BMC Syst Biol 2:78. https://doi.org/10.1186/1752-0509-2-78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Münzner U, Lubitz T, Klipp E, Krantz M (2017) Towards genome-scale models of signal transduction networks. In: Nielsen J, Hohmann S (eds) Systems biology. Wiley, Hoboken, NJ, pp 215–242. https://doi.org/10.1002/9783527696130.ch8

    Chapter  Google Scholar 

  9. Romers JC, Krantz M (2017) Pre-print: rxncon 2.0: a language for executable molecular systems biology. bioRxiv. https://doi.org/10.1101/107136

  10. Tiger CF, Krause F, Cedersund G, Palmer R, Klipp E, Hohmann S, Kitano H, Krantz M (2012) A framework for mapping, visualisation and automatic model creation of signal-transduction networks. Mol Syst Biol 8:578. https://doi.org/10.1038/msb.2012.12

    Article  CAS  Google Scholar 

  11. Lubitz T, Welkenhuysen N, Shashkova S, Bendrioua L, Hohmann S, Klipp E, Krantz M (2015) Network reconstruction and validation of the Snf1/AMPK pathway in baker’s yeast based on a comprehensive literature review. NPJ Syst Biol Appl 1:15007. https://doi.org/10.1038/npjsba.2015.7 http://www.nature.com/articles/npjsba20157#supplementary-information

    Article  PubMed  PubMed Central  Google Scholar 

  12. Romers JC, Thieme S, Münzner U, Krantz M (2017) Pre-print: a scalable method for parameter-free simulation and validation of mechanistic cellular signal transduction network models. bioRxiv. https://doi.org/10.1101/107235

  13. Rother M, Münzner U, Thieme S, Krantz M (2013) Information content and scalability in signal transduction network reconstruction formats. Mol BioSyst 9(8):1993–2004. https://doi.org/10.1039/c3mb00005b

    Article  CAS  PubMed  Google Scholar 

  14. Faeder JR, Blinov ML, Hlavacek WS (2009) Rule-based modeling of biochemical systems with BioNetGen. Methods Mol Biol 500:113–167. https://doi.org/10.1007/978-1-59745-525-1_5

    Article  CAS  PubMed  Google Scholar 

  15. Flottmann M, Krause F, Klipp E, Krantz M (2013) Reaction-contingency based bipartite Boolean modelling. BMC Syst Biol 7:58. https://doi.org/10.1186/1752-0509-7-58

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mori T, Flottmann M, Krantz M, Akutsu T, Klipp E (2015) Stochastic simulation of Boolean rxncon models: towards quantitative analysis of large signaling networks. BMC Syst Biol 9:45. https://doi.org/10.1186/s12918-015-0193-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Thiele I, Palsson BO (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc 5(1):93–121. https://doi.org/10.1038/nprot.2009.203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Siddle K (2012) Molecular basis of signaling specificity of insulin and IGF receptors: neglected corners and recent advances. Front Endocrinol (Lausanne) 3:34. https://doi.org/10.3389/fendo.2012.00034

    Article  Google Scholar 

  19. Mussel C, Hopfensitz M, Kestler HA (2010) BoolNet--an R package for generation, reconstruction and analysis of Boolean networks. Bioinformatics 26(10):1378–1380. https://doi.org/10.1093/bioinformatics/btq124

    Article  CAS  PubMed  Google Scholar 

  20. Hlavacek WS, Faeder JR (2009) The complexity of cell signaling and the need for a new mechanics. Sci Signal 2(81):pe46. https://doi.org/10.1126/scisignal.281pe46

    Article  PubMed  Google Scholar 

  21. Mi H, Schreiber F, Moodie S, Czauderna T, Demir E, Haw R, Luna A, Le Novere N, Sorokin A, Villeger A (2015) Systems biology graphical notation: activity flow language level 1 version 1.2. J Integr Bioinform 12(2):265. https://doi.org/10.2390/biecoll-jib-2015-265

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the German Federal Ministry of Education and Research via e:Bio Cellemental (FKZ0316193, to MK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Krantz .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Romers, J., Thieme, S., Münzner, U., Krantz, M. (2019). Using rxncon to Develop Rule-Based Models. In: Hlavacek, W. (eds) Modeling Biomolecular Site Dynamics. Methods in Molecular Biology, vol 1945. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9102-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9102-0_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9100-6

  • Online ISBN: 978-1-4939-9102-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics