Skip to main content

RKappa: Software for Analyzing Rule-Based Models

  • Protocol
  • First Online:
Modeling Biomolecular Site Dynamics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1945))


RKappa is a framework for the development, simulation, and analysis of rule-based models within the mature statistically empowered R environment. It is designed for model editing, parameter identification, simulation, sensitivity analysis, and visualization. The framework is optimized for high-performance computing platforms and facilitates analysis of large-scale systems biology models where knowledge of exact mechanisms is limited and parameter values are uncertain.

The RKappa software is an open-source (GLP3 license) package for R, which is freely available online (

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions


  1. Danos V, Laneve C (2004) Formal molecular biology. Theor Comput Sci 325:69–110

    Article  Google Scholar 

  2. Blinov ML, Faeder JR, Goldstein B, Hlavacek WS (2004) BioNetGen: software for rule-based modeling of signal transduction based on the interactions of molecular domains. Bioinformatics 20:3289–3291

    Article  CAS  Google Scholar 

  3. Le Novère N, Shimizu TS (2001) STOCHSIM: modelling of stochastic biomolecular processes. Bioinformatics 17:575–576

    Article  Google Scholar 

  4. Chylek LA, Harris LA, Tung CS et al (2014) Rule-based modeling: a computational approach for studying biomolecular site dynamics in cell signaling systems. Wiley Interdiscip Rev Syst Biol Med 6:13–36

    Article  CAS  Google Scholar 

  5. Sorokina O, Sorokin A, Armstrong JD (2013) A simulator for spatially extended Kappa models. Bioinformatics 29:3105–3106

    Article  CAS  Google Scholar 

  6. Grünert G, Dittrich P (2011) Using the SRSim software for spatial and rule-based modeling of combinatorially complex biochemical reaction systems. In: Gheorghe M, Hinze T, Păun G, Rozenberg G, Salomaa A (eds) Membrane computing, vol 6501. Springer, Berlin., Lect Notes Comput Sci, pp 240–256

    Chapter  Google Scholar 

  7. Plimpton S, Slepoy A (2005) Microbial cell modeling via reacting diffusive particles. J Phys Conf Ser 16:305–309

    Article  Google Scholar 

  8. Andrews SS, Bray D (2004) Stochastic simulation of chemical reactions with spatial resolution and single molecule detail. Phys Biol 1:137–151

    Article  CAS  Google Scholar 

  9. Stiles J, Bartol T (2001) Monte Carlo methods for simulating realistic synaptic microphysiology using MCell. In: Erik DS (ed) Computational neuroscience: realistic modeling for experimentalists. CRC Press, Boca Raton, FL, pp 87–127

    Google Scholar 

  10. Sneddon MW, Faeder JR, Emonet T (2010) Efficient modeling, simulation and coarse-graining of biological complexity with NFsim. Nat Methods 8:177–183

    Article  Google Scholar 

  11. Thomas BR, Chylek LA, Colvin J et al (2016) BioNetFit: a fitting tool compatible with BioNetGen, NFsim and distributed computing environments. Bioinformatics 32:798–800

    Article  CAS  Google Scholar 

  12. Marino S, Hogue IB, Ray CJ, Kirschner DE (2008) A methodology for performing global uncertainty and sensitivity analysis in systems biology. J Theor Biol 254:178–196

    Article  Google Scholar 

  13. Lebedeva G, Sorokin A, Faratian D et al (2012) Model-based global sensitivity analysis as applied to identification of anti-cancer drug targets and biomarkers of drug resistance in the ErbB2/3 network. Eur J Pharm Sci 46:244–258

    Article  Google Scholar 

  14. Sorokin A, Sorokina O, Armstrong JD (2015) RKappa: statistical sampling suite for Kappa models. In: Maler O, Halász Á, Dang T, Piazza C (eds) Hybrid systems biology, vol 7699. Springer, Cham., Lect Notes Comput Sci, pp 128–142

    Chapter  Google Scholar 

  15. Pujol G, Iooss B, Janon A (2015) sensitivity package, version 1.11. The comprehensive R Archive Network, Accessed 26 Aug 2016

  16. Sorokina O, Sorokin A, Armstrong JD (2011) Towards a quantitative model of the post-synaptic proteome. Mol BioSyst 7:2813–2823

    Article  CAS  Google Scholar 

  17. Cho KH, Shin SY, Kolch W et al (2003) Experimental design in systems biology, based on parameter sensitivity analysis using a Monte Carlo method: a case study for the TNFα-mediated NFκB signal transduction pathway. SIMULATION 79:726–739

    Article  Google Scholar 

  18. Roustant O, Ginsbourger D, Deville Y (2012) DiceKriging, DiceOptim: two R packages for the analysis of computer experiments by kriging-based metamodeling and optimization. J Stat Softw 51(1):1–55.

    Article  Google Scholar 

  19. Bischl B, Lang M et al (2015) BatchExperiments: abstraction mechanisms for using Rin batch environments. J Stat Softw 64(11):1–25

    Article  Google Scholar 

  20. Wickham H (2011) The split-apply-combine strategy for data analysis. J Stat Softw 40:1–29

    Google Scholar 

  21. Wang D, Murphy M (2005) Identifying nonlinear relationships in regression using the ACE Algorithm. J Appl Stat 32:243–258

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sorokin, A., Sorokina, O., Douglas Armstrong, J. (2019). RKappa: Software for Analyzing Rule-Based Models. In: Hlavacek, W. (eds) Modeling Biomolecular Site Dynamics. Methods in Molecular Biology, vol 1945. Humana Press, New York, NY.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9100-6

  • Online ISBN: 978-1-4939-9102-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics