Skip to main content

In Silico Evolution of Signaling Networks Using Rule-Based Models: Bistable Response Dynamics

Part of the Methods in Molecular Biology book series (MIMB,volume 1945)

Abstract

One of the ultimate goals in biology is to understand the design principles of biological systems. Such principles, if they exist, can help us better understand complex, natural biological systems and guide the engineering of de novo ones. Toward deciphering design principles, in silico evolution of biological systems with proper abstraction is a promising approach. Here, we demonstrate the application of in silico evolution combined with rule-based modeling for exploring design principles of cellular signaling networks. This application is based on a computational platform, called BioJazz, which allows in silico evolution of signaling networks with unbounded complexity. We provide a detailed introduction to BioJazz architecture and implementation and describe how it can be used to evolve and/or design signaling networks with defined dynamics. For the latter, we evolve signaling networks with switch-like response dynamics and demonstrate how BioJazz can result in new biological insights into network structures that can endow bistable response dynamics. This example also demonstrated both the power of BioJazz in evolving and designing signaling networks and its limitations at the current stage of development.

Key words

  • In silico evolution
  • Rule-based model
  • Design principles
  • Cellular information processing
  • Signaling networks
  • Molecular site dynamics

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-9102-0_15
  • Chapter length: 25 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-9102-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Walpole J, Papin JA, Peirce SM (2013) Multiscale computational models of complex biological systems. Annu Rev Biomed Eng 15:137–154

    CAS  CrossRef  Google Scholar 

  2. Arnold FH (2001) Combinatorial and computational challenges for biocatalyst design. Nature 409:253–257

    CAS  CrossRef  Google Scholar 

  3. Deeds EJ, Krivine J, Feret J et al (2012) Combinatorial complexity and compositional drift in protein interaction networks. PLoS One 7:e32032

    CrossRef  Google Scholar 

  4. Cornforth DM, Popat R, McNally L et al (2014) Combinatorial quorum sensing allows bacteria to resolve their social and physical environment. Proc Natl Acad Sci U S A 111:4280–4284

    CAS  CrossRef  Google Scholar 

  5. Buchler NE, Gerland U, Hwa T (2003) On schemes of combinatorial transcription logic. Proc Natl Acad Sci U S A 100:5136–5141

    CAS  CrossRef  Google Scholar 

  6. Alexander RP, Kim PM, Emonet T et al (2009) Understanding modularity in molecular networks requires dynamics. Sci Signal 2:pe44–pe44

    CrossRef  Google Scholar 

  7. Kholodenko BN (2006) Cell-signalling dynamics in time and space. Nat Rev Mol Cell Biol 7:165–176

    CAS  CrossRef  Google Scholar 

  8. Rousseau F, Schymkowitz J (2005) A systems biology perspective on protein structural dynamics and signal transduction. Curr Opin Struct Biol 15:23–30

    CAS  CrossRef  Google Scholar 

  9. Westerhoff HV, Kolodkin A, Conradie R et al (2009) Systems biology towards life in silico: mathematics of the control of living cells. J Math Biol 58:7–34

    CrossRef  Google Scholar 

  10. Gunawardena J (2010) Systems biology. Biological systems theory. Science 328:581–582

    CAS  CrossRef  Google Scholar 

  11. Alon U (2006) An introduction to systems biology. CRC Press, Boca Raton, FL

    Google Scholar 

  12. Elowitz M, Lim WA (2010) Build life to understand it. Nature 468:889–890

    CAS  CrossRef  Google Scholar 

  13. Andrianantoandro E, Basu S, Karig DK et al (2006) Synthetic biology: new engineering rules for an emerging discipline. Mol Syst Biol 2:2006.0028

    CrossRef  Google Scholar 

  14. Mukherji S, van Oudenaarden A (2009) Synthetic biology: understanding biological design from synthetic circuits. Nat Rev Genet 10(12):859–871

    CAS  CrossRef  Google Scholar 

  15. Grosskopf T, Soyer OS (2014) Synthetic microbial communities. Curr Opin Microbiol 18:72–77

    CAS  CrossRef  Google Scholar 

  16. Lynch M (2007) The evolution of genetic networks by non-adaptive processes. Nat Rev Genet 8:803–813

    CAS  CrossRef  Google Scholar 

  17. Soyer OS, Bonhoeffer S (2006) Evolution of complexity in signaling pathways. Proc Natl Acad Sci U S A 103:16337–16342

    CAS  CrossRef  Google Scholar 

  18. Pfeiffer T, Soyer OS, Bonhoeffer S (2005) The evolution of connectivity in metabolic networks. PLoS Biol 3:e228

    CrossRef  Google Scholar 

  19. Meyers LA, Bull JJ (2002) Fighting change with change: adaptive variation in an uncertain world. Trends Ecol Evol 17:551–557

    CrossRef  Google Scholar 

  20. Feng S, Ollivier JF, Swain PS et al (2015) BioJazz: in silico evolution of cellular networks with unbounded complexity using rule-based modeling. Nucleic Acids Res 43(19):e123. https://doi.org/10.1093/nar/gkv595

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  21. Feng S, Ollivier JF, Soyer OS (2016) Enzyme sequestration as a tuning point in controlling response dynamics of signalling networks. PLoS Comput Biol 12(5):e1004918

    CrossRef  Google Scholar 

  22. François P, Hakim V (2004) Design of genetic networks with specified functions by evolution in silico. Proc Natl Acad Sci U S A 101:580–585

    CrossRef  Google Scholar 

  23. François P, Hakim V, Siggia ED (2007) Deriving structure from evolution: metazoan segmentation. Mol Syst Biol 3:154

    CrossRef  Google Scholar 

  24. Hynes NE, Ingham PW, Lim WA et al (2013) Signalling change: signal transduction through the decades. Nat Rev Mol Cell Biol 14:393–398

    CAS  CrossRef  Google Scholar 

  25. Schlessinger J (2004) Common and distinct elements in cellular signaling via EGF and FGF receptors. Science (New York, NY) 306:1506–1507

    CAS  CrossRef  Google Scholar 

  26. Hlavacek WS, Faeder JR, Blinov ML et al (2006) Rules for modeling signal-transduction systems. Sci STKE 2006(344):re6

    PubMed  Google Scholar 

  27. Ollivier JF, Shahrezaei V, Swain PS (2010) Scalable rule-based modelling of allosteric proteins and biochemical networks. PLoS Comput Biol 6(11):e1000975

    CrossRef  Google Scholar 

  28. Siso-Nadal F, Ollivier JF, Swain PS (2007) Facile: a command-line network compiler for systems biology. BMC Syst Biol 1:36

    CrossRef  Google Scholar 

  29. Goldbeter A, Koshland DE (1981) An amplified sensitivity arising from covalent modification in biological systems. Proc Natl Acad Sci U S A 78:6840–6844

    CAS  CrossRef  Google Scholar 

  30. Sha W, Moore J, Chen K et al (2003) Hysteresis drives cell-cycle transitions in Xenopus laevis egg extracts. Proc Natl Acad Sci U S A 100:975–980

    CAS  CrossRef  Google Scholar 

  31. Pomerening JR, Sontag ED, Ferrell JE (2003) Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2. Nat Cell Biol 5:346–351

    CAS  CrossRef  Google Scholar 

  32. Angeli D, Ferrell JE, Sontag ED (2004) Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems. Proc Natl Acad Sci U S A 101:1822–1827

    CAS  CrossRef  Google Scholar 

  33. Brandman O, Ferrell JE, Li R et al (2005) Interlinked fast and slow positive feedback loops drive reliable cell decisions. Science (New York, NY) 310:496–498

    CAS  CrossRef  Google Scholar 

  34. Das J, Ho M, Zikherman J et al (2009) Digital signaling and hysteresis characterize Ras activation in lymphoid cells. Cell 136:337–351

    CAS  CrossRef  Google Scholar 

  35. Xiong W, Ferrell JE Jr (2003) A positive-feedback-based bistable “memory module” that governs a cell fate decision. Nature 426:460–465

    CAS  CrossRef  Google Scholar 

  36. Soulé C (2003) Graphic requirements for multistationarity. Complexus 1:123–133

    CrossRef  Google Scholar 

  37. Markevich NI, Hoek JB, Kholodenko BN (2004) Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades. J Cell Biol 164:353–359

    CAS  CrossRef  Google Scholar 

  38. Feinberg M (1987) Chemical reaction network structure and the stability of complex isothermal reactors—I. The deficiency zero and deficiency one theorems. Chem Eng Sci 42:2229–2268

    CAS  CrossRef  Google Scholar 

  39. Feinberg M (1988) Chemical reaction network structure and the stability of complex isothermal reactors—II. Multiple steady states for networks of deficiency one. Chem Eng Sci 43:1–25

    CAS  CrossRef  Google Scholar 

  40. Craciun G, Feinberg M (2005) Multiple equilibria in complex chemical reaction networks: I. The injectivity property. J SIAM Appl Math 65:1526–1546

    CAS  CrossRef  Google Scholar 

  41. Craciun G, Feinberg M (2006) Multiple equilibria in complex chemical reaction networks: II. The species-reaction graph. J SIAM Appl Math 66:1321–1338

    CAS  CrossRef  Google Scholar 

  42. Feng S, Sáez M, Wiuf C et al (2016) Core signalling motif displaying multistability through multi-state enzymes. J R Soc Interface 13:20160524

    CrossRef  Google Scholar 

  43. Joshi B, Shiu A (2012) Atoms of multistationarity in chemical reaction networks. J Math Chem 51:153–178

    Google Scholar 

  44. Ravasi T, Suzuki H, Cannistraci CV et al (2010) An atlas of combinatorial transcriptional regulation in mouse and man. Cell 140:744–752

    CAS  CrossRef  Google Scholar 

  45. Narlikar GJ, Fan H-Y, Kingston RE (2002) Cooperation between complexes that regulate chromatin structure and transcription. Cell 108:475–487

    CAS  CrossRef  Google Scholar 

  46. Levine H (2016) Expanding the scale of molecular biophysics. Phys Biol 13:053001

    CrossRef  Google Scholar 

  47. Perkins TJ, Swain PS (2009) Strategies for cellular decision-making. Mol Syst Biol 5:326

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orkun S. Soyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Feng, S., Soyer, O.S. (2019). In Silico Evolution of Signaling Networks Using Rule-Based Models: Bistable Response Dynamics. In: Hlavacek, W. (eds) Modeling Biomolecular Site Dynamics. Methods in Molecular Biology, vol 1945. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9102-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9102-0_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9100-6

  • Online ISBN: 978-1-4939-9102-0

  • eBook Packages: Springer Protocols