Advertisement

Microbubbles for Nucleic Acid Delivery in Liver Using Mild Sonoporation

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1943)

Abstract

Ultrasound-mediated gene delivery is an interesting approach, which could help in increasing gene transfer in deep tissues. Moreover, it allows for performing experiments guided by the image to determine which elements are required. Microbubbles complexed with a eukaryotic expression cassette are excellent agents as they are responsive to ultrasounds and, upon oscillation, can destabilize membranes to enhance gene transfer. Here, we describe the preparation of positively charged microbubbles, plasmid free of antibiotic resistance marker, their combination and the conditions of ultrasound-mediated liver transfection post-systemic administration in mice. This association allowed us to obtain a superior liver gene expression at least over 8 months after a single injection.

Key words

Microbubbles Cationic lipid Lipoplex characterization Ultrasound delivery Optical imaging Gene expression pFAR 

References

  1. 1.
    Salazar-Montes AM, Hernández-Ortega LD, Lucano-Landeros MS, Armendariz-Borunda J (2015) New gene therapy strategies for hepatic fibrosis. World J Gastroenterol 21:3813–3825CrossRefGoogle Scholar
  2. 2.
    Delalande A, Postema M, Mignet N, Midoux P, Pichon C (2012) Ultrasound and microbubble-assisted gene delivery: recent advances and ongoing challenges. Ther Deliv 3:1199–1215CrossRefGoogle Scholar
  3. 3.
    Delalande A, Bouakaz A, Renault G, Tabareau K, Kotopoulis S, Midoux P, Arbeille B, Uzbeko R, Chakravarti S, Postema M, Pichon C (2011) Ultrasound and microbubble-assisted gene delivery in Achilles tendons: long lasting gene expression and restoration of fibromodulin KO phenotype. J Control Release 156:223–230CrossRefGoogle Scholar
  4. 4.
    Shapiro G, Wong A, Bez M, Yang F, Tam S, Even L, Sheyn D, Ben-David S, Tawackoli W, Pelled G, Ferrara KW, Gazit D (2016) Multiparameter evaluation of in vivo gene delivery using ultrasound-guided, microbubble-enhanced sonoporation. J Control Release 223:157–164CrossRefGoogle Scholar
  5. 5.
    Sakakima Y, Hayashi S, Yagi Y, Hayakawa A, Tachibana K, Nakao A (2005) Gene therapy for hepatocellular carcinoma using sonoporation enhanced by contrast agents. Cancer Gene Ther 12:884–889CrossRefGoogle Scholar
  6. 6.
    Salazar-Montes AM, Hernández-Ortega LD, Lucano-Landeros MS, Armendariz-Borunda J (2015) New gene therapy strategies for hepatic fibrosis. World J Gastroenterol 21:3813–3825CrossRefGoogle Scholar
  7. 7.
    Anderson CD, Moisyadi S, Avelar A, Walton CB, Shohet RV (2016) Ultrasound targeted hepatic delivery of factor IX in hemophiliac mice. Gene Ther 23:510–519CrossRefGoogle Scholar
  8. 8.
    Anwer K, Kao G, Proctor B, Anscombe I, Florack V, Earl R, Wilson E, McCreery T, Unger E, Rolland A, Sullivan SM (2000) Ultrasound enhancement of cationic lipid-mediated gene transfer to primary tumors following systemic administration. Gene Ther 7:1833–1839CrossRefGoogle Scholar
  9. 9.
    Chen ZY, He CY, Ehrhardt A, Kay MA (2003) Minicircle DNA vectors devoid of bacterial DNA result in persistent and high-level transgene expression in vivo. Mol Ther 8:495–500CrossRefGoogle Scholar
  10. 10.
    Quiviger M, Arfi A, Mansard D, Delacotte L, Pastor M, Scherman D, Marie C (2014) High and prolonged sulfamidase secretion by the liver of MPS-IIIA mice following hydrodynamic tail vein delivery of antibiotic-free pFAR4 plasmid vector. Gene Ther 21:1001–1007CrossRefGoogle Scholar
  11. 11.
    Schlegel A, Largeau C, Bigey P, Bessodes M, Lebozec K, Scherman D, Escriou V (2011) Anionic polymers for decreased toxicity and enhanced in vivo delivery of siRNA complexed with cationic liposomes. J Control Release 152:393–340CrossRefGoogle Scholar
  12. 12.
    Tranchant I, Thompson B, Nicolazzi C, Mignet N, Scherman D (2004) Physicochemical optimisation of plasmid delivery by cationic lipids. J Gene Med 6:S24–S35CrossRefGoogle Scholar
  13. 13.
    Marie C, Vandermeulen G, Quiviger M, Richard M, Préat V Scherman D (2010) pFARs, plasmids free of antibiotic resistance markers, display high-level transgene expression in muscle, skin and tumour cells. J Gene Med 12:323–332CrossRefGoogle Scholar
  14. 14.
    Manta S, Renault G, Delalande A, Couture O, Lagoutte I, Seguin J, Lager F, Houzé P, Midoux P, Bessodes M, Scherman D, Bureau MF, Marie C, Pichon C, Mignet N (2017) Cationic microbubbles and antibiotic-free miniplasmid for sustained ultrasound-mediated transgene expression in liver. J Control Release 262:170–181CrossRefGoogle Scholar
  15. 15.
    Thompson B, Mignet N, Hofland H, Lamons D, Seguin J, Nicolazzi C, de la Figuera N, Kuen R, Meng Y, Scherman D, Bessodes M (2005) Neutral post-grafted colloidal particles for gene delivery. Bioconjug Chem 16:608–614CrossRefGoogle Scholar
  16. 16.
    Bessodes M, Mignet N (2013) Lipids for nucleic acid delivery: synthesis and particle formation. Methods Mol Biol 948:67–84PubMedGoogle Scholar
  17. 17.
    Bloquel C, Bejjani R, Bigey P, Bedioui F, Doat M, BenEzra D, Scherman D, Behar-Cohen F (2006) Plasmid electrotransfer of eye ciliary muscle: principles and therapeutic efficacy using hTNF-alpha soluble receptor in uveitis. FASEB J 20:389–391CrossRefGoogle Scholar
  18. 18.
    Manta S, Delalande A, Bessodes M, Bureau MF, Scherman D, Pichon C, Mignet N (2016) Characterization of positively charged lipid shell microbubbles with tunable resistive pulse sensing (TRPS) method: a technical note. Ultrasound Med Biol 42:624–630CrossRefGoogle Scholar
  19. 19.
    Willmott G, Vogel R, Yu S, Groenewegen L, Roberts G, Kozak D, Anderson W, Trau M (2010) Use of tunable nanopore blockade rates to investigate colloidal dispersions. J Phys Condens Matter 22:454116CrossRefGoogle Scholar
  20. 20.
    Delalande A, Leduc C, Midoux P, Postema M, Pichon C (2015) Efficient gene delivery by sonoporation is associated with microbubble entry into cells and the clathrin dependent endocytosis pathway. Ultrasound Med Biol 41:1913–1926CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), INSERM, U1022ParisFrance
  2. 2.INSERM, U1022ParisFrance
  3. 3.CNRS, UMR8258ParisFrance
  4. 4.Faculté de Pharmacie, Sorbonne Paris CitéUniversité Paris DescartesParisFrance
  5. 5.Chimie ParisTechPSL Research UniversityParisFrance
  6. 6.Centre de Biophysique Moléculaire and Université d’OrléansCNRS-UPR 4301OrléansFrance
  7. 7.INSERM, U1016, Institut CochinParisFrance
  8. 8.CNRS, UMR8104ParisFrance
  9. 9.Sorbonne Paris CitéUniversité Paris DescartesParisFrance

Personalised recommendations