Propagation and Maintenance of Mouse Embryonic Stem Cells

  • Jacob M. Paynter
  • Joseph Chen
  • Xiaodong Liu
  • Christian M. NefzgerEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1940)


Mouse embryonic stem cells (mESCs) are pluripotent cells derived from preimplantation embryos that have the capacity to self-renew indefinitely in vitro. mESCs are an indispensable tool for studying cellular differentiation in vitro, generating disease in a dish models, and have been used extensively for the generation of transgenic animals. Therefore, maintaining their pluripotent state, even after extended culture, is crucial for their utility. Herein, we describe in detail a protocol for the culture of mESCs in the presence of fetal calf serum (FCS), leukemia inhibitory factor (LIF), and a layer of irradiated mouse embryonic fibroblasts (iMEFs). This culture system reliably sustains mESC pluripotency and self-renewal capacity, allowing their use in a wide range of experimental settings.

Key words

Mouse embryonic stem cells Cell culture Pluripotency Mouse embryonic fibroblasts Leukemia inhibitory factor 


  1. 1.
    Hackett JA, Surani MA (2014) Regulatory principles of pluripotency: from the ground state up. Cell Stem Cell 15:416–430CrossRefGoogle Scholar
  2. 2.
    Evans M (2011) Discovering pluripotency: 30 years of mouse embryonic stem cells. Nat Rev Mol Cell Biol 12:680–686CrossRefGoogle Scholar
  3. 3.
    Stevens LC, Little CC (1954) Spontaneous testicular teratomas in an inbred strain of mice. Proc Natl Acad Sci U S A 40:1080–1087CrossRefGoogle Scholar
  4. 4.
    Kleinsmith LJ, Pierce GB (1964) Multipotentiality of single embryonal carcinoma cells. Cancer Res 24:1544–1551PubMedGoogle Scholar
  5. 5.
    Rosenthal MD, Wishnow RM, Sato GH (1970) In vitro growth and differentiation of clonal populations of multipotential mouse cells derived from a transplantable testicular teratocarcinoma. J Natl Cancer Inst 44:1001–1014PubMedGoogle Scholar
  6. 6.
    Kahan BW, Ephrussi B (1970) Developmental potentialities of clonal in vitro cultures of mouse testicular teratoma. J Natl Cancer Inst 44:1015–1036PubMedGoogle Scholar
  7. 7.
    Martin GR, Smith S, Epstein CJ (1978) Protein synthetic patterns in teratocarcinoma stem cells and mouse embryos at early stages of development. Dev Biol 66:8–16CrossRefGoogle Scholar
  8. 8.
    Martin GR, Evans MJ (1975) Differentiation of clonal lines of teratocarcinoma cells: formation of embryoid bodies in vitro. Proc Natl Acad Sci U S A 72(4):1441–1445CrossRefGoogle Scholar
  9. 9.
    Martin GR, Evans MJ (1975) Multiple differentiation of clonal teratocarcinoma stem cells following embryoid body formation in vitro. Cell 6:467–474CrossRefGoogle Scholar
  10. 10.
    Adamson ED, Evans MJ, Magrane GG (1977) Biochemical markers of the progress of differentiation in cloned teratocarcinoma cell lines. Eur J Biochem 79:607–615CrossRefGoogle Scholar
  11. 11.
    Jacob F (1977) Mouse teratocarcinoma and embryonic antigens. Immunol Rev 33:3–32CrossRefGoogle Scholar
  12. 12.
    Kapadia A, Feizi T, Evans MJ (1981) Changes in the expression and polarization of blood group I and i antigens in post-implantation embryos and teratocarcinomas of mouse associated with cell differentiation. Exp Cell Res 131:185–195CrossRefGoogle Scholar
  13. 13.
    Lovell-Badge R, Evans M (1980) Changes in protein synthesis during differentiation of embryonal carcinoma cells, and a comparison with embryo cells. Development 59:187–206Google Scholar
  14. 14.
    Stern PL, Willison KR, Lennox E, Galfrè G, Milstein C et al (1978) Monoclonal antibodies as probes for differentiation and tumor-associated antigens: a Forssman specificity on teratocarcinoma stem cells. Cell 14:775–783CrossRefGoogle Scholar
  15. 15.
    Papaioannou VE, McBurney MW, Gardner RL, Evans MJ (1975) Fate of teratocarcinoma cells injected into early mouse embryos. Nature 258:70–73CrossRefGoogle Scholar
  16. 16.
    Mintz B, Illmensee K (1975) Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc Natl Acad Sci U S A 72:3585–3589CrossRefGoogle Scholar
  17. 17.
    Brinster RL (1974) The effect of cells transferred into the mouse blastocyst on subsequent development. J Exp Med 140:1049CrossRefGoogle Scholar
  18. 18.
    Martin GR (1980) Teratocarcinomas and mammalian embryogenesis. Science 209:768–776CrossRefGoogle Scholar
  19. 19.
    Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156CrossRefGoogle Scholar
  20. 20.
    Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 78:7634–7638CrossRefGoogle Scholar
  21. 21.
    Bradley A, Evans M, Kaufman MH, Robertson E (1984) Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309:255–256CrossRefGoogle Scholar
  22. 22.
    Nagy A, Rossant J, Nagy R, Abramow-Newerly W, Roder JC (1993) Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc Natl Acad Sci U S A 90:8424–8428CrossRefGoogle Scholar
  23. 23.
    Horie K, Kokubu C, Yoshida J, Akagi K, Isotani A et al (2011) A homozygous mutant embryonic stem cell bank applicable for phenotype-driven genetic screening. Nat Methods 8:1071–1077CrossRefGoogle Scholar
  24. 24.
    Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW et al (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153:910–918CrossRefGoogle Scholar
  25. 25.
    Platt RJ, Chen S, Zhou Y, Yim MJ, Swiech L et al (2014) CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159:440–455CrossRefGoogle Scholar
  26. 26.
    Oji A, Noda T, Fujihara Y, Miyata H, Kim YJ et al (2016) CRISPR/Cas9 mediated genome editing in ES cells and its application for chimeric analysis in mice. Sci Rep 6:31666CrossRefGoogle Scholar
  27. 27.
    Williams RL, Hilton DJ, Pease S, Willson TA, Stewart CL et al (1988) Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 336:684–687CrossRefGoogle Scholar
  28. 28.
    Smith AG, Heath JK, Donaldson DD, Wong GG, Moreau J et al (1988) Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 336:688–690CrossRefGoogle Scholar
  29. 29.
    Rathjen PD, Toth S, Willis A, Heath JK, Smith AG (1990) Differentiation inhibiting activity is produced in matrix-associated and diffusible forms that are generated by alternate promoter usage. Cell 62:1105–1114CrossRefGoogle Scholar
  30. 30.
    Martello G, Smith A (2014) The nature of embryonic stem cells. Annu Rev Cell Dev Biol 30:647–675CrossRefGoogle Scholar
  31. 31.
    Niwa H, Ogawa K, Shimosato D, Adachi K (2009) A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells. Nature 460:118–122CrossRefGoogle Scholar
  32. 32.
    Ye S, Li P, Tong C, Ying QL (2013) Embryonic stem cell self-renewal pathways converge on the transcription factor Tfcp2l1. EMBO J 32:2548–2560CrossRefGoogle Scholar
  33. 33.
    Martello G, Bertone P, Smith A (2013) Identification of the missing pluripotency mediator downstream of leukaemia inhibitory factor. EMBO J 32:2561–2574CrossRefGoogle Scholar
  34. 34.
    Tai C-I, Ying Q-L (2013) Gbx2, a LIF/Stat3 target, promotes reprogramming to and retention of the pluripotent ground state. J Cell Sci 126:1093–1098CrossRefGoogle Scholar
  35. 35.
    Ying Q-L, Nichols J, Chambers I, Smith A (2003) BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115:281–292CrossRefGoogle Scholar
  36. 36.
    Malaguti M, Nistor PA, Blin G, Pegg A, Zhou X, Lowell S (2013) Bone morphogenic protein signalling suppresses differentiation of pluripotent cells by maintaining expression of E-Cadherin. elife 2:e01197CrossRefGoogle Scholar
  37. 37.
    Ying Q-L, Wray J, Nichols J, Batlle-Morera L, Doble B et al (2008) The ground state of embryonic stem cell self-renewal. Nature 453:519–523CrossRefGoogle Scholar
  38. 38.
    Morgani SM, Canham MA, Nichols J, Sharov AA, Migueles RP et al (2013) Totipotent embryonic stem cells arise in ground-state culture conditions. Cell Rep 3:1945–1957CrossRefGoogle Scholar
  39. 39.
    Nefzger CM, Rossello FJ, Chen J, Liu X, Knaupp AS et al (2017) Cell Rep. 21:2649–2660.Google Scholar
  40. 40.
    Nefzger CM, Alaei S, Knaupp AS, Holmes ML, Polo JM (2014) Cell surface marker mediated purification of iPS cell intermediates from a reprogrammable mouse model. J Vis Exp (91):e51728.Google Scholar
  41. 41.
    Parrinello S, Samper E, Krtolica A, Goldstein J, Melov S, Campisi J (2003) Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nat Cell Biol 5:741–747CrossRefGoogle Scholar
  42. 42.
    Nefzger CM, Haynes JM, Pouton CW (2011) Directed expression of Gata2, Mash1, and Foxa2 synergize to induce the serotonergic neuron phenotype during in vitro differentiation of embryonic stem cells. Stem Cells 29:928–939CrossRefGoogle Scholar
  43. 43.
    Nefzger CM, Alaei S, Polo JM (2015) Isolation of reprogramming intermediates during generation of induced pluripotent stem cells from mouse embryonic fibroblasts. Methods Mol Biol 1330:205–218CrossRefGoogle Scholar
  44. 44.
    Alaei S, Knaupp A, Lim S, Chen J, Holmes M et al (2016) An improved reprogrammable mouse model harbouring the reverse tetracycline-controlled transcriptional transactivator 3. Stem Cell Res 17:49–53CrossRefGoogle Scholar
  45. 45.
    Firas J, Liu X, Nefzger CM, Polo JM (2014) GM-CSF and MEF-conditioned media support feeder-free reprogramming of mouse granulocytes to iPS cells. Differentiation 87:193–199CrossRefGoogle Scholar
  46. 46.
    Chen J, Nefzger CM, Rossello FJ, Sun YBY, Lim SM et al (2018) Fine tuning of canonical Wnt stimulation enhances differentiation of pluripotent stem cells independent of β-catenin-mediated T-Cell factor signaling. Stem Cells 36:822–833CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jacob M. Paynter
    • 1
    • 2
    • 3
  • Joseph Chen
    • 1
    • 2
    • 3
  • Xiaodong Liu
    • 1
    • 2
    • 3
  • Christian M. Nefzger
    • 1
    • 2
    • 3
    • 4
    Email author
  1. 1.Department of Anatomy and Developmental BiologyMonash UniversityClaytonAustralia
  2. 2.Development and Stem Cells ProgramMonash Biomedicine Discovery InstituteClaytonAustralia
  3. 3.Australian Regenerative Medicine InstituteMonash UniversityClaytonAustralia
  4. 4.Institute for Molecular BioscienceThe University of QueenslandSt LuciaAustralia

Personalised recommendations