Advertisement

Modeling FXS: Human Pluripotent Stem Cells and In Vitro Neural Differentiation

  • Liron Kuznitsov-Yanovsky
  • Yoav Mayshar
  • Dalit Ben-YosefEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1942)

Abstract

In fragile X syndrome (FXS) embryos FMRP is widely expressed during early stages of embryogenesis however it is inactivated by the end of the first trimester. In the same manner, human embryonic stem cell (hESC) lines from FXS blastocysts, bearing the full CGG expansion mutation, express FMRP in their pluripotent stage and in neurons derived following in vitro differentiation, FMR1 is completely silenced. Therefore, in vitro neural differentiation of FX-hESC lines serves as a uniquely valuable model system to study the developmental mechanisms underlying FXS, together with the proper differentiation protocol to mimic the neurodevelopmental process occurs in vivo.

Key words

Pluripotent human embryonic stem cells In vitro neural differentiation Dual-SMAD inhibition 

References

  1. 1.
    Levenga J, de Vrij FM, Buijsen RA, Li T, Nieuwenhuizen IM, Pop A, Oostra BA, Willemsen R (2011) Subregion-specific dendritic spine abnormalities in the hippocampus of Fmr1 KO mice. Neurobiol Learn Mem 95(4):467–472. https://doi.org/10.1016/j.nlm.2011.02.009CrossRefPubMedGoogle Scholar
  2. 2.
    Nimchinsky EA, Oberlander AM, Svoboda K (2001) Abnormal development of dendritic spines in FMR1 knock-out mice. J Neurosci 21(14):5139–5146CrossRefGoogle Scholar
  3. 3.
    Gatto CL, Broadie K (2008) Temporal requirements of the fragile X mental retardation protein in the regulation of synaptic structure. Development 135(15):2637–2648. https://doi.org/10.1242/dev.022244CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ng MC, Yang YL, Lu KT (2013) Behavioral and synaptic circuit features in a zebrafish model of fragile X syndrome. PLoS One 8(3):e51456. https://doi.org/10.1371/journal.pone.0051456CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Irwin SA, Patel B, Idupulapati M, Harris JB, Crisostomo RA, Larsen BP, Kooy F, Willems PJ, Cras P, Kozlowski PB, Swain RA, Weiler IJ, Greenough WT (2001) Abnormal dendritic spine characteristics in the temporal and visual cortices of patients with fragile-X syndrome: a quantitative examination. Am J Med Genet 98(2):161–167CrossRefGoogle Scholar
  6. 6.
    Castren M, Tervonen T, Karkkainen V, Heinonen S, Castren E, Larsson K, Bakker CE, Oostra BA, Akerman K (2005) Altered differentiation of neural stem cells in fragile X syndrome. Proc Natl Acad Sci U S A 102(49):17834–17839. https://doi.org/10.1073/pnas.0508995102CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Schwartz PH, Tassone F, Greco CM, Nethercott HE, Ziaeian B, Hagerman RJ, Hagerman PJ (2005) Neural progenitor cells from an adult patient with fragile X syndrome. BMC Med Genet 6:2. https://doi.org/10.1186/1471-2350-6-2CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Bhattacharyya A, McMillan E, Wallace K, Tubon TC Jr, Capowski EE, Svendsen CN (2008) Normal neurogenesis but abnormal gene expression in human fragile X cortical progenitor cells. Stem Cells Dev 17(1):107–117. https://doi.org/10.1089/scd.2007.0073CrossRefPubMedGoogle Scholar
  9. 9.
    Sheridan SD, Theriault KM, Reis SA, Zhou F, Madison JM, Daheron L, Loring JF, Haggarty SJ (2011) Epigenetic characterization of the FMR1 gene and aberrant neurodevelopment in human induced pluripotent stem cell models of fragile X syndrome. PLoS One 6(10):e26203. https://doi.org/10.1371/journal.pone.0026203CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Urbach A, Bar-Nur O, Daley GQ, Benvenisty N (2010) Differential modeling of fragile X syndrome by human embryonic stem cells and induced pluripotent stem cells. Cell Stem Cell 6(5):407–411. https://doi.org/10.1016/j.stem.2010.04.005CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Halevy T, Czech C, Benvenisty N (2015) Molecular mechanisms regulating the defects in fragile X syndrome neurons derived from human pluripotent stem cells. Stem Cell Reports 4(1):37–46. https://doi.org/10.1016/j.stemcr.2014.10.015CrossRefPubMedGoogle Scholar
  12. 12.
    Willemsen R, Bontekoe CJ, Severijnen LA, Oostra BA (2002) Timing of the absence of FMR1 expression in full mutation chorionic villi. Hum Genet 110(6):601–605. https://doi.org/10.1007/s00439-002-0723-5CrossRefPubMedGoogle Scholar
  13. 13.
    Eiges R, Urbach A, Malcov M, Frumkin T, Schwartz T, Amit A, Yaron Y, Eden A, Yanuka O, Benvenisty N, Ben-Yosef D (2007) Developmental study of fragile X syndrome using human embryonic stem cells derived from preimplantation genetically diagnosed embryos. Cell Stem Cell 1(5):568–577. https://doi.org/10.1016/j.stem.2007.09.001CrossRefPubMedGoogle Scholar
  14. 14.
    Telias M, Segal M, Ben-Yosef D (2013) Neural differentiation of fragile X human embryonic stem cells reveals abnormal patterns of development despite successful neurogenesis. Dev Biol 374(1):32–45. https://doi.org/10.1016/j.ydbio.2012.11.031CrossRefPubMedGoogle Scholar
  15. 15.
    Telias M, Segal M, Ben-Yosef D (2014) Electrical maturation of neurons derived from human embryonic stem cells. F1000Res 3:196. https://doi.org/10.12688/f1000research.4943.2CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Telias M, Kuznitsov-Yanovsky L, Segal M, Ben-Yosef D (2015) Functional deficiencies in fragile X neurons derived from human embryonic stem cells. J Neurosci 35(46):15295–15306. https://doi.org/10.1523/JNEUROSCI.0317-15.2015CrossRefPubMedGoogle Scholar
  17. 17.
    Boland MJ, Nazor KL, Tran HT, Szucs A, Lynch CL, Paredes R, Tassone F, Sanna PP, Hagerman RJ, Loring JF (2017) Molecular analyses of neurogenic defects in a human pluripotent stem cell model of fragile X syndrome. Brain 140(3):582–598. https://doi.org/10.1093/brain/aww357CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Smith JR, Vallier L, Lupo G, Alexander M, Harris WA, Pedersen RA (2008) Inhibition of activin/nodal signaling promotes specification of human embryonic stem cells into neuroectoderm. Dev Biol 313(1):107–117. https://doi.org/10.1016/j.ydbio.2007.10.003CrossRefPubMedGoogle Scholar
  19. 19.
    Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27(3):275–280. https://doi.org/10.1038/nbt.1529CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Shi Y, Kirwan P, Smith J, Robinson HP, Livesey FJ (2012) Human cerebral cortex development from pluripotent stem cells to functional excitatory synapses. Nat Neurosci 15(3):477–486. https://doi.org/10.1038/nn.3041CrossRefPubMedGoogle Scholar
  21. 21.
    Inman GJ, Nicolas FJ, Callahan JF, Harling JD, Gaster LM, Reith AD, Laping NJ, Hill CS (2002) SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol Pharmacol 62(1):65–74CrossRefGoogle Scholar
  22. 22.
    Boergermann JH, Kopf J, Yu PB, Knaus P (2010) Dorsomorphin and LDN-193189 inhibit BMP-mediated Smad, p38 and Akt signalling in C2C12 cells. Int J Biochem Cell Biol 42(11):1802–1807. https://doi.org/10.1016/j.biocel.2010.07.018CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Lippmann ES, Estevez-Silva MC, Ashton RS (2014) Defined human pluripotent stem cell culture enables highly efficient neuroepithelium derivation without small molecule inhibitors. Stem Cells 32(4):1032–1042. https://doi.org/10.1002/stem.1622CrossRefPubMedGoogle Scholar
  24. 24.
    Maroof AM, Keros S, Tyson JA, Ying SW, Ganat YM, Merkle FT, Liu B, Goulburn A, Stanley EG, Elefanty AG, Widmer HR, Eggan K, Goldstein PA, Anderson SA, Studer L (2013) Directed differentiation and functional maturation of cortical interneurons from human embryonic stem cells. Cell Stem Cell 12(5):559–572. https://doi.org/10.1016/j.stem.2013.04.008CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Lanner F, Rossant J (2010) The role of FGF/Erk signaling in pluripotent cells. Development 137(20):3351–3360. https://doi.org/10.1242/dev.050146CrossRefPubMedGoogle Scholar
  26. 26.
    Greber B, Coulon P, Zhang M, Moritz S, Frank S, Muller-Molina AJ, Arauzo-Bravo MJ, Han DW, Pape HC, Scholer HR (2011) FGF signalling inhibits neural induction in human embryonic stem cells. EMBO J 30(24):4874–4884. https://doi.org/10.1038/emboj.2011.407CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Qi Y, Zhang XJ, Renier N, Wu Z, Atkin T, Sun Z, Ozair MZ, Tchieu J, Zimmer B, Fattahi F, Ganat Y, Azevedo R, Zeltner N, Brivanlou AH, Karayiorgou M, Gogos J, Tomishima M, Tessier-Lavigne M, Shi SH, Studer L (2017) Combined small-molecule inhibition accelerates the derivation of functional cortical neurons from human pluripotent stem cells. Nat Biotechnol 35(2):154–163. https://doi.org/10.1038/nbt.3777CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Lie DC, Colamarino SA, Song HJ, Desire L, Mira H, Consiglio A, Lein ES, Jessberger S, Lansford H, Dearie AR, Gage FH (2005) Wnt signalling regulates adult hippocampal neurogenesis. Nature 437(7063):1370–1375. https://doi.org/10.1038/nature04108CrossRefPubMedGoogle Scholar
  29. 29.
    Salinas PC (2012) Wnt signaling in the vertebrate central nervous system: from axon guidance to synaptic function. Cold Spring Harb Perspect Biol 4(2). https://doi.org/10.1101/cshperspect.a008003

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Liron Kuznitsov-Yanovsky
    • 1
    • 2
  • Yoav Mayshar
    • 3
  • Dalit Ben-Yosef
    • 3
    Email author
  1. 1.Wolfe PGD Stem Cell Lab, Racine IVF Unit at Lis Maternity HospitalTel Aviv Sourasky Medical CenterTel AvivIsrael
  2. 2.Department of Cell and Developmental Biology, Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
  3. 3.Wolfe PGD Stem Cell Lab, Racine IVF Unit at Lis Maternity HospitalTel Aviv Sourasky Medical Center, Tel Aviv UniversityTel AvivIsrael

Personalised recommendations