Skip to main content

Modeling FXS: Human Pluripotent Stem Cells and In Vitro Neural Differentiation

  • Protocol
  • First Online:
Book cover Fragile-X Syndrome

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1942))

Abstract

In fragile X syndrome (FXS) embryos FMRP is widely expressed during early stages of embryogenesis however it is inactivated by the end of the first trimester. In the same manner, human embryonic stem cell (hESC) lines from FXS blastocysts, bearing the full CGG expansion mutation, express FMRP in their pluripotent stage and in neurons derived following in vitro differentiation, FMR1 is completely silenced. Therefore, in vitro neural differentiation of FX-hESC lines serves as a uniquely valuable model system to study the developmental mechanisms underlying FXS, together with the proper differentiation protocol to mimic the neurodevelopmental process occurs in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Levenga J, de Vrij FM, Buijsen RA, Li T, Nieuwenhuizen IM, Pop A, Oostra BA, Willemsen R (2011) Subregion-specific dendritic spine abnormalities in the hippocampus of Fmr1 KO mice. Neurobiol Learn Mem 95(4):467–472. https://doi.org/10.1016/j.nlm.2011.02.009

    Article  CAS  PubMed  Google Scholar 

  2. Nimchinsky EA, Oberlander AM, Svoboda K (2001) Abnormal development of dendritic spines in FMR1 knock-out mice. J Neurosci 21(14):5139–5146

    Article  CAS  Google Scholar 

  3. Gatto CL, Broadie K (2008) Temporal requirements of the fragile X mental retardation protein in the regulation of synaptic structure. Development 135(15):2637–2648. https://doi.org/10.1242/dev.022244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ng MC, Yang YL, Lu KT (2013) Behavioral and synaptic circuit features in a zebrafish model of fragile X syndrome. PLoS One 8(3):e51456. https://doi.org/10.1371/journal.pone.0051456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Irwin SA, Patel B, Idupulapati M, Harris JB, Crisostomo RA, Larsen BP, Kooy F, Willems PJ, Cras P, Kozlowski PB, Swain RA, Weiler IJ, Greenough WT (2001) Abnormal dendritic spine characteristics in the temporal and visual cortices of patients with fragile-X syndrome: a quantitative examination. Am J Med Genet 98(2):161–167

    Article  CAS  Google Scholar 

  6. Castren M, Tervonen T, Karkkainen V, Heinonen S, Castren E, Larsson K, Bakker CE, Oostra BA, Akerman K (2005) Altered differentiation of neural stem cells in fragile X syndrome. Proc Natl Acad Sci U S A 102(49):17834–17839. https://doi.org/10.1073/pnas.0508995102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schwartz PH, Tassone F, Greco CM, Nethercott HE, Ziaeian B, Hagerman RJ, Hagerman PJ (2005) Neural progenitor cells from an adult patient with fragile X syndrome. BMC Med Genet 6:2. https://doi.org/10.1186/1471-2350-6-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bhattacharyya A, McMillan E, Wallace K, Tubon TC Jr, Capowski EE, Svendsen CN (2008) Normal neurogenesis but abnormal gene expression in human fragile X cortical progenitor cells. Stem Cells Dev 17(1):107–117. https://doi.org/10.1089/scd.2007.0073

    Article  CAS  PubMed  Google Scholar 

  9. Sheridan SD, Theriault KM, Reis SA, Zhou F, Madison JM, Daheron L, Loring JF, Haggarty SJ (2011) Epigenetic characterization of the FMR1 gene and aberrant neurodevelopment in human induced pluripotent stem cell models of fragile X syndrome. PLoS One 6(10):e26203. https://doi.org/10.1371/journal.pone.0026203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Urbach A, Bar-Nur O, Daley GQ, Benvenisty N (2010) Differential modeling of fragile X syndrome by human embryonic stem cells and induced pluripotent stem cells. Cell Stem Cell 6(5):407–411. https://doi.org/10.1016/j.stem.2010.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Halevy T, Czech C, Benvenisty N (2015) Molecular mechanisms regulating the defects in fragile X syndrome neurons derived from human pluripotent stem cells. Stem Cell Reports 4(1):37–46. https://doi.org/10.1016/j.stemcr.2014.10.015

    Article  CAS  PubMed  Google Scholar 

  12. Willemsen R, Bontekoe CJ, Severijnen LA, Oostra BA (2002) Timing of the absence of FMR1 expression in full mutation chorionic villi. Hum Genet 110(6):601–605. https://doi.org/10.1007/s00439-002-0723-5

    Article  CAS  PubMed  Google Scholar 

  13. Eiges R, Urbach A, Malcov M, Frumkin T, Schwartz T, Amit A, Yaron Y, Eden A, Yanuka O, Benvenisty N, Ben-Yosef D (2007) Developmental study of fragile X syndrome using human embryonic stem cells derived from preimplantation genetically diagnosed embryos. Cell Stem Cell 1(5):568–577. https://doi.org/10.1016/j.stem.2007.09.001

    Article  CAS  PubMed  Google Scholar 

  14. Telias M, Segal M, Ben-Yosef D (2013) Neural differentiation of fragile X human embryonic stem cells reveals abnormal patterns of development despite successful neurogenesis. Dev Biol 374(1):32–45. https://doi.org/10.1016/j.ydbio.2012.11.031

    Article  CAS  PubMed  Google Scholar 

  15. Telias M, Segal M, Ben-Yosef D (2014) Electrical maturation of neurons derived from human embryonic stem cells. F1000Res 3:196. https://doi.org/10.12688/f1000research.4943.2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Telias M, Kuznitsov-Yanovsky L, Segal M, Ben-Yosef D (2015) Functional deficiencies in fragile X neurons derived from human embryonic stem cells. J Neurosci 35(46):15295–15306. https://doi.org/10.1523/JNEUROSCI.0317-15.2015

    Article  CAS  PubMed  Google Scholar 

  17. Boland MJ, Nazor KL, Tran HT, Szucs A, Lynch CL, Paredes R, Tassone F, Sanna PP, Hagerman RJ, Loring JF (2017) Molecular analyses of neurogenic defects in a human pluripotent stem cell model of fragile X syndrome. Brain 140(3):582–598. https://doi.org/10.1093/brain/aww357

    Article  PubMed  PubMed Central  Google Scholar 

  18. Smith JR, Vallier L, Lupo G, Alexander M, Harris WA, Pedersen RA (2008) Inhibition of activin/nodal signaling promotes specification of human embryonic stem cells into neuroectoderm. Dev Biol 313(1):107–117. https://doi.org/10.1016/j.ydbio.2007.10.003

    Article  CAS  PubMed  Google Scholar 

  19. Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27(3):275–280. https://doi.org/10.1038/nbt.1529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shi Y, Kirwan P, Smith J, Robinson HP, Livesey FJ (2012) Human cerebral cortex development from pluripotent stem cells to functional excitatory synapses. Nat Neurosci 15(3):477–486. https://doi.org/10.1038/nn.3041

    Article  CAS  PubMed  Google Scholar 

  21. Inman GJ, Nicolas FJ, Callahan JF, Harling JD, Gaster LM, Reith AD, Laping NJ, Hill CS (2002) SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol Pharmacol 62(1):65–74

    Article  CAS  Google Scholar 

  22. Boergermann JH, Kopf J, Yu PB, Knaus P (2010) Dorsomorphin and LDN-193189 inhibit BMP-mediated Smad, p38 and Akt signalling in C2C12 cells. Int J Biochem Cell Biol 42(11):1802–1807. https://doi.org/10.1016/j.biocel.2010.07.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lippmann ES, Estevez-Silva MC, Ashton RS (2014) Defined human pluripotent stem cell culture enables highly efficient neuroepithelium derivation without small molecule inhibitors. Stem Cells 32(4):1032–1042. https://doi.org/10.1002/stem.1622

    Article  CAS  PubMed  Google Scholar 

  24. Maroof AM, Keros S, Tyson JA, Ying SW, Ganat YM, Merkle FT, Liu B, Goulburn A, Stanley EG, Elefanty AG, Widmer HR, Eggan K, Goldstein PA, Anderson SA, Studer L (2013) Directed differentiation and functional maturation of cortical interneurons from human embryonic stem cells. Cell Stem Cell 12(5):559–572. https://doi.org/10.1016/j.stem.2013.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lanner F, Rossant J (2010) The role of FGF/Erk signaling in pluripotent cells. Development 137(20):3351–3360. https://doi.org/10.1242/dev.050146

    Article  CAS  PubMed  Google Scholar 

  26. Greber B, Coulon P, Zhang M, Moritz S, Frank S, Muller-Molina AJ, Arauzo-Bravo MJ, Han DW, Pape HC, Scholer HR (2011) FGF signalling inhibits neural induction in human embryonic stem cells. EMBO J 30(24):4874–4884. https://doi.org/10.1038/emboj.2011.407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Qi Y, Zhang XJ, Renier N, Wu Z, Atkin T, Sun Z, Ozair MZ, Tchieu J, Zimmer B, Fattahi F, Ganat Y, Azevedo R, Zeltner N, Brivanlou AH, Karayiorgou M, Gogos J, Tomishima M, Tessier-Lavigne M, Shi SH, Studer L (2017) Combined small-molecule inhibition accelerates the derivation of functional cortical neurons from human pluripotent stem cells. Nat Biotechnol 35(2):154–163. https://doi.org/10.1038/nbt.3777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lie DC, Colamarino SA, Song HJ, Desire L, Mira H, Consiglio A, Lein ES, Jessberger S, Lansford H, Dearie AR, Gage FH (2005) Wnt signalling regulates adult hippocampal neurogenesis. Nature 437(7063):1370–1375. https://doi.org/10.1038/nature04108

    Article  CAS  PubMed  Google Scholar 

  29. Salinas PC (2012) Wnt signaling in the vertebrate central nervous system: from axon guidance to synaptic function. Cold Spring Harb Perspect Biol 4(2). https://doi.org/10.1101/cshperspect.a008003

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dalit Ben-Yosef .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kuznitsov-Yanovsky, L., Mayshar, Y., Ben-Yosef, D. (2019). Modeling FXS: Human Pluripotent Stem Cells and In Vitro Neural Differentiation. In: Ben-Yosef, D., Mayshar, Y. (eds) Fragile-X Syndrome. Methods in Molecular Biology, vol 1942. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9080-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9080-1_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9079-5

  • Online ISBN: 978-1-4939-9080-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics