Folch J, Ascoli I, Lees M, Meath JA, Le BN (1951) Preparation of lipide extracts from brain tissue. J Biol Chem 191(2):833–841
CAS
PubMed
Google Scholar
Folch J, Lees M (1951) Proteolipides, a new type of tissue lipoproteins; their isolation from brain. J Biol Chem 191(2):807–817
CAS
PubMed
Google Scholar
Lees MB (1998) A history of proteolipids: a personal memoir. Neurochem Res 23(3):261–271
CAS
CrossRef
PubMed
Google Scholar
Jahn O, Tenzer S, Werner HB (2009) Myelin proteomics: molecular anatomy of an insulating sheath. Mol Neurobiol 40(1):55–72
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Mobius W, Patzig J, Nave KA, Werner HB (2008) Phylogeny of proteolipid proteins: divergence, constraints, and the evolution of novel functions in myelination and neuroprotection. Neuron Glia Biol 4(2):111–127. https://doi.org/10.1017/S1740925X0900009X
CrossRef
PubMed
Google Scholar
de Monasterio-Schrader P, Patzig J, Mobius W, Barrette B, Wagner TL, Kusch K, Edgar JM, Brophy PJ, Werner HB (2013) Uncoupling of neuroinflammation from axonal degeneration in mice lacking the myelin protein tetraspanin-2. Glia 61(11):1832–1847. https://doi.org/10.1002/glia.22561
CrossRef
PubMed
Google Scholar
Brophy PJ, Horvath LI, Marsh D (1984) Stoichiometry and specificity of lipid-protein interaction with myelin proteolipid protein studied by spin-label electron spin resonance. Biochemistry 23(5):860–865
CAS
CrossRef
PubMed
Google Scholar
Yamaguchi Y, Ikenaka K, Niinobe M, Yamada H, Mikoshiba K (1996) Myelin proteolipid protein (PLP), but not DM-20, is an inositol hexakisphosphate-binding protein. J Biol Chem 271(44):27838–27846
CAS
CrossRef
PubMed
Google Scholar
Simons M, Kramer EM, Thiele C, Stoffel W, Trotter J (2000) Assembly of myelin by association of proteolipid protein with cholesterol- and galactosylceramide-rich membrane domains. J Cell Biol 151(1):143–154
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Kramer-Albers EM, Gehrig-Burger K, Thiele C, Trotter J, Nave KA (2006) Perturbed interactions of mutant proteolipid protein/DM20 with cholesterol and lipid rafts in oligodendroglia: implications for dysmyelination in spastic paraplegia. J Neurosci 26(45):11743–11752. https://doi.org/10.1523/JNEUROSCI.3581-06.2006
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Ozgen H, Schrimpf W, Hendrix J, de Jonge JC, Lamb DC, Hoekstra D, Kahya N, Baron W (2014) The lateral membrane organization and dynamics of myelin proteins PLP and MBP are dictated by distinct galactolipids and the extracellular matrix. PLoS One 9(7):e101834. https://doi.org/10.1371/journal.pone.0101834
CrossRef
PubMed Central
PubMed
Google Scholar
Werner HB, Kramer-Albers EM, Strenzke N, Saher G, Tenzer S, Ohno-Iwashita Y, De Monasterio-Schrader P, Mobius W, Moser T, Griffiths IR, Nave KA (2013) A critical role for the cholesterol-associated proteolipids PLP and M6B in myelination of the central nervous system. Glia 61(4):567–586. https://doi.org/10.1002/glia.22456
CrossRef
PubMed
Google Scholar
Mandel P, Borkowski T, Harth S, Mardell R (1961) Incorporation of 32P in ribonucleic acid of subcellular fractions of various regions of the rat central nervous system. J Neurochem 8:126–138
CAS
CrossRef
PubMed
Google Scholar
Eichberg J, Whittaker VP, Dawson RM (1964) Distribution of lipids in subcellular particles of Guinea-pig brain. Biochem J 92(1):91–100
CAS
CrossRef
PubMed
Google Scholar
Korey SR, Orchen M, Brotz M (1958) Studies of white matter. I. Chemical constitution and respiration of neuroglial and myelin enriched fractions of white matter. J Neuropathol Exp Neurol 17(3):430–438
CAS
CrossRef
PubMed
Google Scholar
August C, Davison AN, Maurice-Williams F (1961) Phospholipid metabolism in nervous tissue. 4. Incorporation of P32 into the lipids of subcellular fractions of the brain. Biochem J 81:8–12
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Autilio LA, Norton WT, Terry RD (1964) The preparation and some properties of purified myelin from the central nervous system. J Neurochem 11:17–27
CAS
CrossRef
PubMed
Google Scholar
Norton WT, Poduslo SE (1973) Myelination in rat brain: method of myelin isolation. J Neurochem 21(4):749–757
CAS
CrossRef
PubMed
Google Scholar
Haley JE, Samuels FG, Ledeen RW (1981) Study of myelin purity in relation to axonal contaminants. Cell Mol Neurobiol 1(2):175–187
CAS
CrossRef
PubMed
Google Scholar
Werner HB, Kuhlmann K, Shen S, Uecker M, Schardt A, Dimova K, Orfaniotou F, Dhaunchak A, Brinkmann BG, Mobius W, Guarente L, Casaccia-Bonnefil P, Jahn O, Nave KA (2007) Proteolipid protein is required for transport of sirtuin 2 into CNS myelin. J Neurosci 27(29):7717–7730. https://doi.org/10.1523/JNEUROSCI.1254-07.2007
CAS
CrossRef
PubMed Central
PubMed
Google Scholar
Wiggins RC, Fuller GN (1981) Analysis of distribution of rat sciatic nerve protein among soluble, insoluble, and myelin subfraction. Neurochem Res 6(6):719–727
CAS
CrossRef
PubMed
Google Scholar
Gent WL, Gregson NA, Gammack DB, Raper JH (1964) The lipid-protein unit in myelin. Nature 204:553–555
CAS
CrossRef
PubMed
Google Scholar
Wolfgram F, Kotorii K (1968) The composition of the myelin proteins of the central nervous system. J Neurochem 15(11):1281–1290
CAS
CrossRef
PubMed
Google Scholar
Morell P, Greenfield S, Costantino-Ceccarini E, Wisniewski H (1972) Changes in the protein composition of mouse brain myelin during development. J Neurochem 19(11):2545–2554
CAS
CrossRef
PubMed
Google Scholar
Ewald A, Kühne W (1874-1877) Ueber einen neuen Bestandtheil des Nervensystems. Verhandlungen des Naturhistorisch-Medizinischen Vereins zu Heidelberg 1:457–464
Google Scholar
Norton WT, Poduslo SE (1973) Myelination in rat brain: changes in myelin composition during brain maturation. J Neurochem 21(4):759–773
CAS
CrossRef
PubMed
Google Scholar
Finean JB (1953) Phospholipid-cholesterol complex in the structure of myelin. Experientia 9(1):17–19
CAS
CrossRef
PubMed
Google Scholar
Cuzner ML, Davison AN, Gregson NA (1965) The chemical composition of vertebrate myelin and microsomes. J Neurochem 12(6):469–481
CAS
CrossRef
PubMed
Google Scholar
Gopalakrishnan G, Awasthi A, Belkaid W, De Faria O Jr, Liazoghli D, Colman DR, Dhaunchak AS (2013) Lipidome and proteome map of myelin membranes. J Neurosci Res 91(3):321–334. https://doi.org/10.1002/jnr.23157
CAS
CrossRef
PubMed
Google Scholar
Thakurela S, Garding A, Jung RB, Muller C, Goebbels S, White R, Werner HB, Tiwari VK (2016) The transcriptome of mouse central nervous system myelin. Sci Rep 6:25828. https://doi.org/10.1038/srep25828
CAS
CrossRef
PubMed Central
PubMed
Google Scholar
de Monasterio-Schrader P, Jahn O, Tenzer S, Wichert SP, Patzig J, Werner HB (2012) Systematic approaches to central nervous system myelin. Cell Mol Life Sci 69(17):2879–2894. https://doi.org/10.1007/s00018-012-0958-9
CAS
CrossRef
PubMed
Google Scholar
Manrique-Hoyos N, Jurgens T, Gronborg M, Kreutzfeldt M, Schedensack M, Kuhlmann T, Schrick C, Bruck W, Urlaub H, Simons M, Merkler D (2012) Late motor decline after accomplished remyelination: impact for progressive multiple sclerosis. Ann Neurol 71(2):227–244. https://doi.org/10.1002/ana.22681
CrossRef
PubMed
Google Scholar
Dagley LF, White CA, Liao Y, Shi W, Smyth GK, Orian JM, Emili A, Purcell AW (2014) Quantitative proteomic profiling reveals novel region-specific markers in the adult mouse brain. Proteomics 14(2–3):241–261. https://doi.org/10.1002/pmic.201300196
CAS
CrossRef
PubMed
Google Scholar
Patzig J, Erwig MS, Tenzer S, Kusch K, Dibaj P, Mobius W, Goebbels S, Schaeren-Wiemers N, Nave KA, Werner HB (2016) Septin/anillin filaments scaffold central nervous system myelin to accelerate nerve conduction. Elife 5. https://doi.org/10.7554/eLife.17119
Dumont D, Noben JP, Moreels M, Vanderlocht J, Hellings N, Vandenabeele F, Lambrichts I, Stinissen P, Robben J (2007) Characterization of mature rat oligodendrocytes: a proteomic approach. J Neurochem 102(2):562–576. https://doi.org/10.1111/j.1471-4159.2007.04575.x
CAS
CrossRef
PubMed
Google Scholar
Iwata K, Cafe-Mendes CC, Schmitt A, Steiner J, Manabe T, Matsuzaki H, Falkai P, Turck CW, Martins-de-Souza D (2013) The human oligodendrocyte proteome. Proteomics 13(23–24):3548–3553. https://doi.org/10.1002/pmic.201300201
CAS
CrossRef
PubMed
Google Scholar
Cassoli JS, Iwata K, Steiner J, Guest PC, Turck CW, Nascimento JM, Martins-de-Souza D (2016) Effect of MK-801 and clozapine on the proteome of cultured human oligodendrocytes. Front Cell Neurosci 10:52. https://doi.org/10.3389/fncel.2016.00052
CAS
CrossRef
PubMed Central
PubMed
Google Scholar
Sharma K, Schmitt S, Bergner CG, Tyanova S, Kannaiyan N, Manrique-Hoyos N, Kongi K, Cantuti L, Hanisch UK, Philips MA, Rossner MJ, Mann M, Simons M (2015) Cell type- and brain region-resolved mouse brain proteome. Nat Neurosci 18(12):1819–1831. https://doi.org/10.1038/nn.4160
CAS
CrossRef
PubMed Central
PubMed
Google Scholar
Werner HB, Jahn O (2010) Myelin matters: proteomic insights into white matter disorders. Expert Rev Proteomics 7(2):159–164
CAS
CrossRef
PubMed
Google Scholar
Farias AS, Pradella F, Schmitt A, Santos LM, Martins-de-Souza D (2014) Ten years of proteomics in multiple sclerosis. Proteomics 14(4–5):467–480. https://doi.org/10.1002/pmic.201300268
CAS
CrossRef
PubMed
Google Scholar
Sherman DL, Brophy PJ (2005) Mechanisms of axon ensheathment and myelin growth. Nat Rev Neurosci 6(9):683–690
CAS
CrossRef
PubMed
Google Scholar
Simons M, Lyons DA (2013) Axonal selection and myelin sheath generation in the central nervous system. Curr Opin Cell Biol 25(4):512–519. https://doi.org/10.1016/j.ceb.2013.04.007
CAS
CrossRef
PubMed
Google Scholar
Nave KA, Werner HB (2014) Myelination of the nervous system: mechanisms and functions. Annu Rev Cell Dev Biol 30:503–533. https://doi.org/10.1146/annurev-cellbio-100913-013101
CAS
CrossRef
PubMed
Google Scholar
Mobius W, Nave KA, Werner HB (2016) Electron microscopy of myelin: structure preservation by high-pressure freezing. Brain Res 1641(Pt A):92–100. https://doi.org/10.1016/j.brainres.2016.02.027
CAS
CrossRef
PubMed
Google Scholar
Good NE, Winget GD, Winter W, Connolly TN, Izawa S, Singh RM (1966) Hydrogen ion buffers for biological research. Biochemistry 5(2):467–477
CAS
CrossRef
PubMed
Google Scholar
Neuhoff V, Arold N, Taube D, Ehrhardt W (1988) Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 9(6):255–262. https://doi.org/10.1002/elps.1150090603
CAS
CrossRef
PubMed
Google Scholar
Patzig J, Jahn O, Tenzer S, Wichert SP, de Monasterio-Schrader P, Rosfa S, Kuharev J, Yan K, Bormuth I, Bremer J, Aguzzi A, Orfaniotou F, Hesse D, Schwab MH, Mobius W, Nave KA, Werner HB (2011) Quantitative and integrative proteome analysis of peripheral nerve myelin identifies novel myelin proteins and candidate neuropathy loci. J Neurosci 31(45):16369–16386. https://doi.org/10.1523/JNEUROSCI.4016-11.2011
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Wessel D, Flugge UI (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 138(1):141–143
CAS
CrossRef
PubMed
Google Scholar
Taylor CM, Pfeiffer SE (2003) Enhanced resolution of glycosylphosphatidylinositol-anchored and transmembrane proteins from the lipid-rich myelin membrane by two-dimensional gel electrophoresis. Proteomics 3(7):1303–1312. https://doi.org/10.1002/pmic.200300451
CAS
CrossRef
PubMed
Google Scholar
Jahn O, Tenzer S, Bartsch N, Patzig J, Werner HB (2013) Myelin proteome analysis: methods and implications for the myelin cytoskeleton. NeuroMethods 79:335–353
CAS
CrossRef
Google Scholar
Moche M, Albrecht D, Maass S, Hecker M, Westermeier R, Buttner K (2013) The new horizon in 2D electrophoresis: new technology to increase resolution and sensitivity. Electrophoresis 34(11):1510–1518. https://doi.org/10.1002/elps.201200618
CAS
CrossRef
PubMed
Google Scholar
Distler U, Kuharev J, Navarro P, Tenzer S (2016) Label-free quantification in ion mobility-enhanced data-independent acquisition proteomics. Nat Protoc 11(4):795–812. https://doi.org/10.1038/nprot.2016.042
CAS
CrossRef
PubMed
Google Scholar
Wisniewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6(5):359–362
CAS
CrossRef
PubMed
Google Scholar
Distler U, Kuharev J, Tenzer S (2014) Biomedical applications of ion mobility-enhanced data-independent acquisition-based label-free quantitative proteomics. Expert Rev Proteomics 11(6):675–684. https://doi.org/10.1586/14789450.2014.971114
CAS
CrossRef
PubMed
Google Scholar
Distler U, Kuharev J, Navarro P, Levin Y, Schild H, Tenzer S (2014) Drift time-specific collision energies enable deep-coverage data-independent acquisition proteomics. Nat Methods 11(2):167–170. https://doi.org/10.1038/nmeth.2767
CAS
CrossRef
PubMed
Google Scholar
Silva JC, Gorenstein MV, Li GZ, Vissers JP, Geromanos SJ (2006) Absolute quantification of proteins by LCMSE: a virtue of parallel MS acquisition. Mol Cell Proteomics 5(1):144–156. https://doi.org/10.1074/mcp.M500230-MCP200
CAS
CrossRef
PubMed
Google Scholar
Lappe-Siefke C, Goebbels S, Gravel M, Nicksch E, Lee J, Braun PE, Griffiths IR, Nave KA (2003) Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nat Genet 33(3):366–374. https://doi.org/10.1038/ng1095
CAS
CrossRef
PubMed
Google Scholar
Edgar JM, McLaughlin M, Werner HB, McCulloch MC, Barrie JA, Brown A, Faichney AB, Snaidero N, Nave KA, Griffiths IR (2009) Early ultrastructural defects of axons and axon-glia junctions in mice lacking expression of Cnp1. Glia 57(16):1815–1824. https://doi.org/10.1002/glia.20893
CrossRef
PubMed
Google Scholar
Hagemeyer N, Goebbels S, Papiol S, Kastner A, Hofer S, Begemann M, Gerwig UC, Boretius S, Wieser GL, Ronnenberg A, Gurvich A, Heckers SH, Frahm J, Nave KA, Ehrenreich H (2012) A myelin gene causative of a catatonia-depression syndrome upon aging. EMBO Mol Med 4(6):528–539. https://doi.org/10.1002/emmm.201200230
CAS
CrossRef
PubMed Central
PubMed
Google Scholar
Sherman DL, Wu LM, Grove M, Gillespie CS, Brophy PJ (2012) Drp2 and periaxin form Cajal bands with dystroglycan but have distinct roles in Schwann cell growth. J Neurosci 32(27):9419–9428. https://doi.org/10.1523/JNEUROSCI.1220-12.2012
CAS
CrossRef
PubMed Central
PubMed
Google Scholar
Domenech-Estevez E, Baloui H, Meng X, Zhang Y, Deinhardt K, Dupree JL, Einheber S, Chrast R, Salzer JL (2016) Akt regulates axon wrapping and myelin sheath thickness in the PNS. J Neurosci 36(16):4506–4521. https://doi.org/10.1523/JNEUROSCI.3521-15.2016
CAS
CrossRef
PubMed Central
PubMed
Google Scholar
Yannakakis MP, Tzoupis H, Michailidou E, Mantzourani E, Simal C, Tselios T (2016) Molecular dynamics at the receptor level of immunodominant myelin oligodendrocyte glycoprotein 35-55 epitope implicated in multiple sclerosis. J Mol Graph Model 68:78–86. https://doi.org/10.1016/j.jmgm.2016.06.005
CAS
CrossRef
PubMed
Google Scholar
Derfuss T, Parikh K, Velhin S, Braun M, Mathey E, Krumbholz M, Kumpfel T, Moldenhauer A, Rader C, Sonderegger P, Pollmann W, Tiefenthaller C, Bauer J, Lassmann H, Wekerle H, Karagogeos D, Hohlfeld R, Linington C, Meinl E (2009) Contactin-2/TAG-1-directed autoimmunity is identified in multiple sclerosis patients and mediates gray matter pathology in animals. Proc Natl Acad Sci U S A 106(20):8302–8307. https://doi.org/10.1073/pnas.0901496106
CrossRef
PubMed Central
PubMed
Google Scholar
Fewou SN, Fernandes A, Stockdale K, Francone VP, Dupree JL, Rosenbluth J, Pfeiffer SE, Bansal R (2010) Myelin protein composition is altered in mice lacking either sulfated or both sulfated and non-sulfated galactolipids. J Neurochem 112(3):599–610. https://doi.org/10.1111/j.1471-4159.2009.06464.x
CAS
CrossRef
PubMed
Google Scholar
Martins-de-Souza D (2011) Proteomics as a tool for understanding schizophrenia. Clin Psychopharmacol Neurosci 9(3):95–101. https://doi.org/10.9758/cpn.2011.9.3.95
CAS
CrossRef
PubMed Central
PubMed
Google Scholar
Soong BW, Huang YH, Tsai PC, Huang CC, Pan HC, Lu YC, Chien HJ, Liu TT, Chang MH, Lin KP, Tu PH, Kao LS, Lee YC (2013) Exome sequencing identifies GNB4 mutations as a cause of dominant intermediate Charcot-Marie-Tooth disease. Am J Hum Genet 92(3):422–430. https://doi.org/10.1016/j.ajhg.2013.01.014
CAS
CrossRef
PubMed Central
PubMed
Google Scholar
Larocca JN, Norton WT (2007) Isolation of myelin. Curr Protoc Cell Biol Chapter 3:Unit3.25
Google Scholar
Menon K, Rasband MN, Taylor CM, Brophy P, Bansal R, Pfeiffer SE (2003) The myelin-axolemmal complex: biochemical dissection and the role of galactosphingolipids. J Neurochem 87(4):995–1009
CAS
CrossRef
PubMed
Google Scholar
Cammer W, Bieler L, Fredman T, Norton WT (1977) Quantitation of myelin carbonic anhydrase-development and subfractionation of rat brain myelin and comparison with myelin from other species. Brain Res 138(1):17–28
CAS
CrossRef
PubMed
Google Scholar
Danks DM, Matthieu JM (1979) Hypotheses regarding myelination derived from comparisons of myelin subfractions. Life Sci 24(16):1425–1440
CAS
CrossRef
PubMed
Google Scholar
Sheads LD, Eby MJ, Sampugna J (1977) Myelin subfractions isolated from mouse brain. Studies of normal mice during development, quaking mutants, and three brain regions. J Neurobiol 8(1):67–89. https://doi.org/10.1002/neu.480080106
CAS
CrossRef
PubMed
Google Scholar
Kirschner DA, Inouye H, Ganser AL, Mann V (1989) Myelin membrane structure and composition correlated: a phylogenetic study. J Neurochem 53(5):1599–1609
CAS
CrossRef
PubMed
Google Scholar
Waehneldt TV (1990) Phylogeny of myelin proteins. Ann N Y Acad Sci 605:15–28
CAS
CrossRef
PubMed
Google Scholar
Roth AD, Ivanova A, Colman DR (2006) New observations on the compact myelin proteome. Neuron Glia Biol 2(1):15–21. https://doi.org/10.1017/S1740925X06000068
CrossRef
PubMed
Google Scholar
Baer AS, Syed YA, Kang SU, Mitteregger D, Vig R, Ffrench-Constant C, Franklin RJ, Altmann F, Lubec G, Kotter MR (2009) Myelin-mediated inhibition of oligodendrocyte precursor differentiation can be overcome by pharmacological modulation of Fyn-RhoA and protein kinase C signalling. Brain 132(Pt 2):465–481. https://doi.org/10.1093/brain/awn334
CrossRef
PubMed Central
PubMed
Google Scholar
Ishii A, Dutta R, Wark GM, Hwang SI, Han DK, Trapp BD, Pfeiffer SE, Bansal R (2009) Human myelin proteome and comparative analysis with mouse myelin. Proc Natl Acad Sci U S A 106(34):14605–14610. https://doi.org/10.1073/pnas.0905936106
CrossRef
PubMed Central
PubMed
Google Scholar
Nawaz S, Schweitzer J, Jahn O, Werner HB (2013) Molecular evolution of myelin basic protein, an abundant structural myelin component. Glia 61(8):1364–1377
CrossRef
PubMed
Google Scholar
Morris JK, Willard BB, Yin X, Jeserich G, Kinter M, Trapp BD (2004) The 36K protein of zebrafish CNS myelin is a short-chain dehydrogenase. Glia 45(4):378–391. https://doi.org/10.1002/glia.10338
CrossRef
PubMed
Google Scholar
Schaefer K, Brosamle C (2009) Zwilling-A and -B, two related myelin proteins of teleosts, which originate from a single bicistronic transcript. Mol Biol Evol 26(3):495–499. https://doi.org/10.1093/molbev/msn298
CAS
CrossRef
PubMed
Google Scholar
Luo S, Wehr NB, Levine RL (2006) Quantitation of protein on gels and blots by infrared fluorescence of Coomassie blue and Fast Green. Anal Biochem 350(2):233–238. https://doi.org/10.1016/j.ab.2005.10.048
CAS
CrossRef
PubMed
Google Scholar
Harris LR, Churchward MA, Butt RH, Coorssen JR (2007) Assessing detection methods for gel-based proteomic analyses. J Proteome Res 6(4):1418–1425. https://doi.org/10.1021/pr0700246
CAS
CrossRef
PubMed
Google Scholar
Schmidt C, Hesse D, Raabe M, Urlaub H, Jahn O (2013) An automated in-gel digestion/iTRAQ-labeling workflow for robust quantification of gel-separated proteins. Proteomics 13(9):1417–1422. https://doi.org/10.1002/pmic.201200366
CAS
CrossRef
PubMed
Google Scholar
Viswanathan S, Unlu M, Minden JS (2006) Two-dimensional difference gel electrophoresis. Nat Protoc 1(3):1351–1358
CAS
CrossRef
PubMed
Google Scholar
Tannu NS, Hemby SE (2006) Two-dimensional fluorescence difference gel electrophoresis for comparative proteomics profiling. Nat Protoc 1(4):1732–1742. https://doi.org/10.1038/nprot.2006.256
CAS
CrossRef
PubMed Central
PubMed
Google Scholar
Jahn O, Hesse D, Reinelt M, Kratzin HD (2006) Technical innovations for the automated identification of gel-separated proteins by MALDI-TOF mass spectrometry. Anal Bioanal Chem 386(1):92–103. https://doi.org/10.1007/s00216-006-0592-1
CAS
CrossRef
PubMed
Google Scholar