Skip to main content

Conditional Mutagenesis in Oligodendrocyte Lineage Cells

  • Protocol
  • First Online:
Oligodendrocytes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1936))

Abstract

Cell-type-specific gene targeting with the Cre/loxP system has become an indispensable technique in experimental neuroscience, particularly for the study of late-born glial cells that make myelin. A plethora of conditional mutants and Cre-expressing mouse lines is now available to the research community that allows laboratories to readily engage in in vivo analyses of oligodendrocytes and their precursor cells. This chapter summarizes concepts and strategies in targeting myelinating glial cells in mice for mutagenesis or imaging, and provides an overview of the most important Cre driver lines successfully used in this rapidly growing field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Capecchi MR (2005) Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nat Rev Genet 6(6):507–512

    Article  CAS  PubMed  Google Scholar 

  2. Thomas KR, Capecchi MR (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51(3):503–512

    Article  CAS  PubMed  Google Scholar 

  3. Giese KP et al (1992) Mouse P0 gene disruption leads to hypomyelination, abnormal expression of recognition molecules, and degeneration of myelin and axons. Cell 71(4):565–576

    Article  CAS  PubMed  Google Scholar 

  4. Klugmann M et al (1997) Assembly of CNS myelin in the absence of proteolipid protein. Neuron 18(1):59–70

    Article  CAS  PubMed  Google Scholar 

  5. Lappe-Siefke C et al (2003) Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nat Genet 33(3):366–374

    Article  CAS  PubMed  Google Scholar 

  6. Xin M et al (2005) Myelinogenesis and axonal recognition by oligodendrocytes in brain are uncoupled in Olig1-null mice. J Neurosci 25(6):1354–1365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Emery B et al (2009) Myelin gene regulatory factor is a critical transcriptional regulator required for CNS myelination. Cell 138(1):172–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Skarnes WC et al (2011) A conditional knockout resource for the genome-wide study of mouse gene function. Nature 474(7351):337–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Goebbels S et al (2006) Genetic targeting of principal neurons in neocortex and hippocampus of NEX-Cre mice. Genesis 44(12):611–621

    Article  CAS  PubMed  Google Scholar 

  10. Lu QR et al (2002) Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte connection. Cell 109(1):75–86

    Article  CAS  PubMed  Google Scholar 

  11. Britsch S et al (2001) The transcription factor Sox10 is a key regulator of peripheral glial development. Genes Dev 15(1):66–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Van de Putte T et al (2003) Mice lacking ZFHX1B, the gene that codes for Smad-interacting protein-1, reveal a role for multiple neural crest cell defects in the etiology of Hirschsprung disease-mental retardation syndrome. Am J Hum Genet 72(2):465–470

    Article  PubMed  PubMed Central  Google Scholar 

  13. Donohoe ME et al (1999) Targeted disruption of mouse Yin Yang 1 transcription factor results in peri-implantation lethality. Mol Cell Biol 19(10):7237–7244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kotch LE et al (1999) Defective vascularization of HIF-1alpha-null embryos is not associated with VEGF deficiency but with mesenchymal cell death. Dev Biol 209(2):254–267

    Article  CAS  PubMed  Google Scholar 

  15. Dymecki SM (1996) Flp recombinase promotes site-specific DNA recombination in embryonic stem cells and transgenic mice. Proc Natl Acad Sci U S A 93(12):6191–6196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sauer B, Henderson N (1988) Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc Natl Acad Sci U S A 85(14):5166–5170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gu H et al (1994) Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science 265(5168):103–106

    Article  CAS  PubMed  Google Scholar 

  18. Goebbels S et al (2010) Elevated phosphatidylinositol 3,4,5-trisphosphate in glia triggers cell-autonomous membrane wrapping and myelination. J Neurosci 30(26):8953–8964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Harrington EP et al (2010) Oligodendrocyte PTEN is required for myelin and axonal integrity, not remyelination. Ann Neurol 68(5):703–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wahl SE et al (2014) Mammalian target of rapamycin promotes oligodendrocyte differentiation, initiation and extent of CNS myelination. J Neurosci 34(13):4453–4465

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Kang SH et al (2013) Degeneration and impaired regeneration of gray matter oligodendrocytes in amyotrophic lateral sclerosis. Nat Neurosci 16(5):571–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. LoPresti P (2015) Inducible expression of a truncated form of tau in oligodendrocytes elicits gait abnormalities and a decrease in myelin: implications for selective CNS degenerative diseases. Neurochem Res 40(11):2188–2199

    Article  CAS  PubMed  Google Scholar 

  23. Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A 89(12):5547–5551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gossen M et al (1995) Transcriptional activation by tetracyclines in mammalian cells. Science 268(5218):1766–1769

    Article  CAS  PubMed  Google Scholar 

  25. Schonig K, Freundlieb S, Gossen M (2013) Tet-transgenic rodents: a comprehensive, up-to date database. Transgenic Res 22(2):251–254

    Article  PubMed  CAS  Google Scholar 

  26. Goebbels S et al (2005) Cre/loxP-mediated inactivation of the bHLH transcription factor gene NeuroD/BETA2. Genesis 42(4):247–252

    Article  CAS  PubMed  Google Scholar 

  27. Nakagawa Y et al (2016) Ultra-superovulation for the CRISPR-Cas9-mediated production of gene-knockout, single-amino-acid-substituted, and floxed mice. Biol Open 5(8):1142–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Quadros RM et al (2017) Easi-CRISPR: a robust method for one-step generation of mice carrying conditional and insertion alleles using long ssDNA donors and CRISPR ribonucleoproteins. Genome Biol 18(1):92

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Yang H, Wang H, Jaenisch R (2014) Generating genetically modified mice using CRISPR/Cas-mediated genome engineering. Nat Protoc 9(8):1956–1968

    Article  CAS  PubMed  Google Scholar 

  30. Meyers EN, Lewandoski M, Martin GR (1998) An Fgf8 mutant allelic series generated by Cre- and Flp-mediated recombination. Nat Genet 18(2):136–141

    Article  CAS  PubMed  Google Scholar 

  31. Farley FW et al (2000) Widespread recombinase expression using FLPeR (flipper) mice. Genesis 28(3–4):106–110

    Article  CAS  PubMed  Google Scholar 

  32. Holzenberger M et al (2000) Cre-mediated germline mosaicism: a method allowing rapid generation of several alleles of a target gene. Nucleic Acids Res 28(21):E92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lakso M et al (1996) Efficient in vivo manipulation of mouse genomic sequences at the zygote stage. Proc Natl Acad Sci U S A 93(12):5860–5865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Umans L et al (2003) Generation of a floxed allele of Smad5 for cre-mediated conditional knockout in the mouse. Genesis 37(1):5–11

    Article  CAS  PubMed  Google Scholar 

  35. Xu X et al (2001) Direct removal in the mouse of a floxed neo gene from a three-loxP conditional knockout allele by two novel approaches. Genesis 30(1):1–6

    Article  PubMed  Google Scholar 

  36. Ringwald M et al (2011) The IKMC web portal: a central point of entry to data and resources from the International Knockout Mouse Consortium. Nucleic Acids Res 39(Database issue):D849–D855

    Article  CAS  PubMed  Google Scholar 

  37. Rivers LE et al (2008) PDGFRA/NG2 glia generate myelinating oligodendrocytes and piriform projection neurons in adult mice. Nat Neurosci 11(12):1392–1401

    Article  CAS  PubMed  Google Scholar 

  38. Kang SH et al (2010) NG2+ CNS glial progenitors remain committed to the oligodendrocyte lineage in postnatal life and following neurodegeneration. Neuron 68(4):668–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhu X, Bergles DE, Nishiyama A (2008) NG2 cells generate both oligodendrocytes and gray matter astrocytes. Development 135(1):145–157

    Article  CAS  PubMed  Google Scholar 

  40. Zhu X et al (2011) Age-dependent fate and lineage restriction of single NG2 cells. Development 138(4):745–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Huang W et al (2014) Novel NG2-CreERT2 knock-in mice demonstrate heterogeneous differentiation potential of NG2 glia during development. Glia 62(6):896–913

    Article  PubMed  Google Scholar 

  42. Battiste J et al (2007) Ascl1 defines sequentially generated lineage-restricted neuronal and oligodendrocyte precursor cells in the spinal cord. Development 134(2):285–293

    Article  CAS  PubMed  Google Scholar 

  43. Niwa-Kawakita M et al (2000) Targeted expression of Cre recombinase to myelinating cells of the central nervous system in transgenic mice. Genesis 26(2):127–129

    Article  CAS  PubMed  Google Scholar 

  44. Hisahara S et al (2000) Targeted expression of baculovirus p35 caspase inhibitor in oligodendrocytes protects mice against autoimmune-mediated demyelination. EMBO J 19(3):341–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gow A (2011) Using temporal genetic switches to synchronize the unfolded protein response in cell populations in vivo. Methods Enzymol 491:143–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Michalski JP et al (2011) The proteolipid protein promoter drives expression outside of the oligodendrocyte lineage during embryonic and early postnatal development. PLoS One 6(5):e19772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Delaunay D et al (2008) Early neuronal and glial fate restriction of embryonic neural stem cells. J Neurosci 28(10):2551–2562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Delaunay D et al (2009) Genetic tracing of subpopulation neurons in the prethalamus of mice (Mus musculus). J Comp Neurol 512(1):74–83

    Article  PubMed  Google Scholar 

  49. Leone DP et al (2003) Tamoxifen-inducible glia-specific Cre mice for somatic mutagenesis in oligodendrocytes and Schwann cells. Mol Cell Neurosci 22(4):430–440

    Article  CAS  PubMed  Google Scholar 

  50. Doerflinger NH, Macklin WB, Popko B (2003) Inducible site-specific recombination in myelinating cells. Genesis 35(1):63–72

    Article  CAS  PubMed  Google Scholar 

  51. Fruhbeis C et al (2013) Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte-neuron communication. PLoS Biol 11(7):e1001604

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Hovelmeyer N et al (2005) Apoptosis of oligodendrocytes via Fas and TNF-R1 is a key event in the induction of experimental autoimmune encephalomyelitis. J Immunol 175(9):5875–5884

    Article  PubMed  Google Scholar 

  53. Zou Y et al (2014) Oligodendrocyte precursor cell-intrinsic effect of Rheb1 controls differentiation and mediates mTORC1-dependent myelination in brain. J Neurosci 34(47):15764–15778

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Kessaris N et al (2006) Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage. Nat Neurosci 9(2):173–179

    Article  CAS  PubMed  Google Scholar 

  55. Zawadzka M et al (2010) CNS-resident glial progenitor/stem cells produce Schwann cells as well as oligodendrocytes during repair of CNS demyelination. Cell Stem Cell 6(6):578–590

    Article  CAS  PubMed  Google Scholar 

  56. Matsuoka T et al (2005) Neural crest origins of the neck and shoulder. Nature 436(7049):347–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. McKenzie IA et al (2014) Motor skill learning requires active central myelination. Science 346(6207):318–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Simon C et al (2012) Sox10-iCreERT2: a mouse line to inducibly trace the neural crest and oligodendrocyte lineage. Genesis 50(6):506–515

    Article  CAS  PubMed  Google Scholar 

  59. Stine ZE et al (2009) Oligodendroglial and pan-neural crest expression of Cre recombinase directed by Sox10 enhancer. Genesis 47(11):765–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Silbereis JC et al (2014) Olig1 function is required to repress dlx1/2 and interneuron production in Mammalian brain. Neuron 81(3):574–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kawaguchi D et al (2016) Generation and analysis of an improved Foxg1-IRES-Cre driver mouse line. Dev Biol 412(1):139–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gorski JA et al (2002) Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-expressing lineage. J Neurosci 22(15):6309–6314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Shimshek DR et al (2002) Codon-improved Cre recombinase (iCre) expression in the mouse. Genesis 32(1):19–26

    Article  CAS  PubMed  Google Scholar 

  64. Dumas L et al (2015) Multicolor analysis of oligodendrocyte morphology, interactions, and development with Brainbow. Glia 63(4):699–717

    Article  PubMed  Google Scholar 

  65. Traka M et al (2016) Oligodendrocyte death results in immune-mediated CNS demyelination. Nat Neurosci 19(1):65–74

    Article  CAS  PubMed  Google Scholar 

  66. Crawford AH et al (2016) Developmental origin of oligodendrocyte lineage cells determines response to demyelination and susceptibility to age-associated functional decline. Cell Rep 15:761–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tripathi RB et al (2011) Dorsally and ventrally derived oligodendrocytes have similar electrical properties but myelinate preferred tracts. J Neurosci 31(18):6809–6819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nave KA, Ehrenreich H (2014) Myelination and oligodendrocyte functions in psychiatric diseases. JAMA Psychiat 71(5):582–584

    Article  Google Scholar 

  69. Brocard J et al (1997) Spatio-temporally controlled site-specific somatic mutagenesis in the mouse. Proc Natl Acad Sci U S A 94(26):14559–14563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Feil R et al (1996) Ligand-activated site-specific recombination in mice. Proc Natl Acad Sci U S A 93(20):10887–10890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Feil R et al (1997) Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem Biophys Res Commun 237(3):752–757

    Article  CAS  PubMed  Google Scholar 

  72. Forni PE et al (2006) High levels of Cre expression in neuronal progenitors cause defects in brain development leading to microencephaly and hydrocephaly. J Neurosci 26(37):9593–9602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Qiu L, Rivera-Perez JA, Xu Z (2011) A non-specific effect associated with conditional transgene expression based on Cre-loxP strategy in mice. PLoS One 6(5):e18778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hagemeyer N et al (2012) A myelin gene causative of a catatonia-depression syndrome upon aging. EMBO Mol Med 4(6):528–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Poggi G et al (2016) Cortical network dysfunction caused by a subtle defect of myelination. Glia 64(11):2025–2040

    Article  PubMed  PubMed Central  Google Scholar 

  76. Akagi K et al (1997) Cre-mediated somatic site-specific recombination in mice. Nucleic Acids Res 25(9):1766–1773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Soriano P (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21(1):70–71

    Article  CAS  PubMed  Google Scholar 

  78. Lobe CG et al (1999) Z/AP, a double reporter for cre-mediated recombination. Dev Biol 208(2):281–292

    Article  CAS  PubMed  Google Scholar 

  79. De Gasperi R et al (2008) The IRG mouse: a two-color fluorescent reporter for assessing Cre-mediated recombination and imaging complex cellular relationships in situ. Genesis 46(6):308–317

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Hartwich H, Satheesh SV, Nothwang HG (2012) A pink mouse reports the switch from red to green fluorescence upon Cre-mediated recombination. BMC Res Notes 5:296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Madisen L et al (2010) A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci 13(1):133–140

    Article  CAS  PubMed  Google Scholar 

  82. Srinivas S et al (2001) Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev Biol 1:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hasegawa Y et al (2013) Novel ROSA26 Cre-reporter knock-in C57BL/6N mice exhibiting green emission before and red emission after Cre-mediated recombination. Exp Anim 62(4):295–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Clarke LE et al (2012) Properties and fate of oligodendrocyte progenitor cells in the corpus callosum, motor cortex, and piriform cortex of the mouse. J Neurosci 32(24):8173–8185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Dimou L et al (2008) Progeny of Olig2-expressing progenitors in the gray and white matter of the adult mouse cerebral cortex. J Neurosci 28(41):10434–10442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Guo F et al (2010) Pyramidal neurons are generated from oligodendroglial progenitor cells in adult piriform cortex. J Neurosci 30(36):12036–12049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Robins SC et al (2013) Evidence for NG2-glia derived, adult-born functional neurons in the hypothalamus. PLoS One 8(10):e78236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Tsoa RW et al (2014) Spatiotemporally different origins of NG2 progenitors produce cortical interneurons versus glia in the mammalian forebrain. Proc Natl Acad Sci U S A 111(20):7444–7449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Muzumdar MD et al (2007) A global double-fluorescent Cre reporter mouse. Genesis 45(9):593–605

    Article  CAS  PubMed  Google Scholar 

  90. Prigge JR et al (2013) Nuclear double-fluorescent reporter for in vivo and ex vivo analyses of biological transitions in mouse nuclei. Mamm Genome 24:389–399

    Article  CAS  Google Scholar 

  91. Rhee JM et al (2006) In vivo imaging and differential localization of lipid-modified GFP-variant fusions in embryonic stem cells and mice. Genesis 44(4):202–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Aggarwal S et al (2011) A size barrier limits protein diffusion at the cell surface to generate lipid-rich myelin-membrane sheets. Dev Cell 21(3):445–456

    Article  CAS  PubMed  Google Scholar 

  93. Amitai-Lange A et al (2015) A method for lineage tracing of corneal cells using multi-color fluorescent reporter mice. J Vis Exp (106):e53370

    Google Scholar 

  94. Janbandhu VC, Moik D, Fassler R (2014) Cre recombinase induces DNA damage and tetraploidy in the absence of loxP sites. Cell Cycle 13(3):462–470

    Article  CAS  PubMed  Google Scholar 

  95. Genoud S et al (2002) Notch1 control of oligodendrocyte differentiation in the spinal cord. J Cell Biol 158(4):709–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Tognatta R et al (2017) Transient Cnp expression by early progenitors causes Cre-Lox-based reporter lines to map profoundly different fates. Glia 65(2):342–359

    Article  PubMed  Google Scholar 

  97. Hirrlinger J et al (2009) Split-CreERT2: temporal control of DNA recombination mediated by split-Cre protein fragment complementation. PLoS One 4(12):e8354

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Hirrlinger J et al (2009) Split-cre complementation indicates coincident activity of different genes in vivo. PLoS One 4(1):e4286

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Madisen L et al (2012) A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat Neurosci 15(5):793–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gibson EM et al (2014) Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science 344(6183):1252304

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Micheva KD et al (2016) A large fraction of neocortical myelin ensheathes axons of local inhibitory neurons. Elife 5:e15784

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Madisen L et al (2015) Transgenic mice for intersectional targeting of neural sensors and effectors with high specificity and performance. Neuron 85(5):942–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Brockschnieder D et al (2006) An improved mouse line for Cre-induced cell ablation due to diphtheria toxin A, expressed from the Rosa26 locus. Genesis 44(7):322–327

    Article  CAS  PubMed  Google Scholar 

  104. Ivanova A et al (2005) In vivo genetic ablation by Cre-mediated expression of diphtheria toxin fragment A. Genesis 43(3):129–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. He M et al (2012) Cell-type-based analysis of microRNA profiles in the mouse brain. Neuron 73(1):35–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sanz E et al (2009) Cell-type-specific isolation of ribosome-associated mRNA from complex tissues. Proc Natl Acad Sci U S A 106(33):13939–13944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Pham AH, McCaffery JM, Chan DC (2012) Mouse lines with photo-activatable mitochondria to study mitochondrial dynamics. Genesis 50(11):833–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Platt RJ et al (2014) CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159(2):440–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Jardi F et al (2017) A shortened tamoxifen induction scheme to induce CreER recombinase without side effects on the male mouse skeleton. Mol Cell Endocrinol 452:57–63

    Article  CAS  PubMed  Google Scholar 

  110. Chen D et al (2002) Tamoxifen and toremifene cause impairment of learning and memory function in mice. Pharmacol Biochem Behav 71(1–2):269–276

    Article  CAS  PubMed  Google Scholar 

  111. Barratt HE et al (2016) Tamoxifen promotes differentiation of oligodendrocyte progenitors in vitro. Neuroscience 319:146–154

    Article  CAS  PubMed  Google Scholar 

  112. Gonzalez GA et al (2016) Tamoxifen accelerates the repair of demyelinated lesions in the central nervous system. Sci Rep 6:31599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Corbo-Rodgers E et al (2012) Oral ivermectin as an unexpected initiator of CreT2-mediated deletion in T cells. Nat Immunol 13(3):197–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Trevisol et al (2017) Monitoring ATP dynamics in electrically active white matter tracts. eLife 6. pii: e24241

    Google Scholar 

Download references

Acknowledgments

We thank Peter Brophy, Brian Popko, Dwight Bergles, Ueli Suter, Bill Richardson, Ori Peles, David Rowitch, and Richard Lu for personal communications on Cre driver lines, members of the Department of Neurogenetics for critical discussion, and Georg Wieser and Ulli Bode for help with the figures. Work in the authors’ laboratories was supported by grants from the DFG (SPP 1757 to S.G. and K.A.N.) and by an European Research Council (ERC) advanced grant (to K.A.N.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sandra Goebbels or Klaus-Armin Nave .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Goebbels, S., Nave, KA. (2019). Conditional Mutagenesis in Oligodendrocyte Lineage Cells. In: Lyons, D., Kegel, L. (eds) Oligodendrocytes. Methods in Molecular Biology, vol 1936. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9072-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9072-6_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9070-2

  • Online ISBN: 978-1-4939-9072-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics