Abstract
Gene transfer and gene therapy are powerful approaches for many biological research applications and promising avenues for the treatment of many genetic or cancer diseases. The most efficient gene transfer tools are currently derived from viruses. Among them, the recombinant adeno-associated viruses (AAVs) are vectors of choice for many fundamental and therapeutic applications. The increasing number of clinical trials involving AAVs demonstrates the need to implement production and purification processes to meet the quantitative and qualitative demands of regulatory agencies for the use of these vectors in clinical trials. In this context, the rise of production levels on an industrial scale appeared essential. The introduction, in 2002, of an AAV process using a baculovirus expression vector system (BEVS) has circumvented this technological lock. The advantage of BEVS in expanding the AAV production in insect cells has been to switch the process to bioreactor systems, which are the ideal equipment for scaling up. We describe here a method for producing AAV vectors using the BEVS which can be easily used by research laboratories wishing to overcome the difficulties associated with the scaling up of production levels. The method provides sufficient quantities of AAV vectors to initiate preclinical projects in large animal models or for research projects where a single batch of vectors will consolidate the repeatability and reproducibility of in vitro and especially in vivo experimental approaches.
Key words
- AAV vectors
- Baculovirus
- Production
- Purification
- Upstream process
- Downstream process
This is a preview of subscription content, access via your institution.
Buying options
References
Gaudet D, Methot J, Dery S et al (2013) Efficacy and long-term safety of alipogene tiparvovec (AAV1-LPLS447X) gene therapy for lipoprotein lipase deficiency: an open-label trial. Gene Ther 20:361–369
Grimm D, Kern A, Rittner K et al (1998) Novel tools for production and purification of recombinant adenoassociated virus vectors. Hum Gene Ther 9:2745–2760
Salvetti A, Oreve S, Chadeuf G et al (1998) Factors influencing recombinant adeno-associated virus production. Hum Gene Ther 9:695–706
Xiao X, Li J, Samulski RJ (1998) Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J Virol 72:2224–2232
Dias Florencio G, Precigout G, Beley C et al (2015) Simple downstream process based on detergent treatment improves yield and in vivo transduction efficacy of adeno-associated virus vectors. Mol Ther Methods Clin Dev 2:15024
Chahal PS, Schulze E, Tran R et al (2014) Production of adeno-associated virus (AAV) serotypes by transient transfection of HEK293 cell suspension cultures for gene delivery. J Virol Methods 196:163–173
Martin J, Frederick A, Luo Y et al (2013) Generation and characterization of adeno-associated virus producer cell lines for research and preclinical vector production. Hum Gene Ther Methods 24:253–269
Ye GJ, Scotti MM, Thomas DL et al (2014) Herpes simplex virus clearance during purification of a recombinant adeno-associated virus serotype 1 vector. Hum Gene Ther Clin Dev 25:212–217
Urabe M, Ding C, Kotin RM (2002) Insect cells as a factory to produce adeno-associated virus type 2 vectors. Hum Gene Ther 13:1935–1943
Wasilko DJ, Lee SE, Stutzman-Engwall KJ et al (2009) The titerless infected-cells preservation and scale-up (TIPS) method for large-scale production of NO-sensitive human soluble guanylate cyclase (sGC) from insect cells infected with recombinant baculovirus. Protein Expr Purif 65:122–132
Cecchini S, Virag T, Kotin RM (2011) Reproducible high yields of recombinant adeno-associated virus produced using invertebrate cells in 0.02- to 200-liter cultures. Hum Gene Ther 22:1021–1030
Buclez PO, Dias Florencio G, Relizani K et al (2016) Rapid, scalable, and low-cost purification of recombinant adeno-associated virus produced by baculovirus expression vector system. Mol Ther Methods Clin Dev 3:16035
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Science+Business Media, LLC, part of Springer Nature
About this protocol
Cite this protocol
Sandro, Q., Relizani, K., Benchaouir, R. (2019). AAV Production Using Baculovirus Expression Vector System. In: Manfredsson, F., Benskey, M. (eds) Viral Vectors for Gene Therapy. Methods in Molecular Biology, vol 1937. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9065-8_5
Download citation
DOI: https://doi.org/10.1007/978-1-4939-9065-8_5
Published:
Publisher Name: Humana Press, New York, NY
Print ISBN: 978-1-4939-9064-1
Online ISBN: 978-1-4939-9065-8
eBook Packages: Springer Protocols