Skip to main content

Stable Genetic Modification of Mesenchymal Stromal Cells Using Lentiviral Vectors

  • Protocol
  • First Online:
Book cover Viral Vectors for Gene Therapy

Abstract

Mesenchymal stromal cell (MSC) therapy has produced very promising results for multiple diseases in animal models, with over 780 clinical trials on going or completed. However, most of the human clinical trials have not been as successful as trials using preclinical models. To improve the therapeutic potential of MSCs, different research groups have used gene transfer vectors to express factors involved in migration, survival, differentiation, and immunomodulation. The ideal gene transfer vector for most applications should achieve long-term, stable (constitutive or inducible) transgene expression in MSCs and their progeny. Given their efficiency and low impact on transduced cells, lentiviral vectors (LVs) are the vectors of choice. In this chapter we will describe a detailed protocol for the generation of genetically modified MSCs using lentiviral vectors (LVs). Although this protocol has been optimized for MSC lentiviral transduction, it can be easily adapted to other stem cells by changing culture conditions while maintaining volumes and incubation times.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy 8(4):315–317

    Article  CAS  Google Scholar 

  2. Hwang BW, Kim SJ, Park KM et al (2015) Genetically engineered mesenchymal stem cell therapy using self-assembling supramolecular hydrogels. J Control Release 220(Pt A):119–129

    Article  CAS  Google Scholar 

  3. Park SA, Ryu CH, Kim SM et al (2011) CXCR4-transfected human umbilical cord blood-derived mesenchymal stem cells exhibit enhanced migratory capacity toward gliomas. Int J Oncol 38(1):97–103

    CAS  PubMed  Google Scholar 

  4. Tyciakova S, Matuskova M, Bohovic R et al (2015) Genetically engineered mesenchymal stromal cells producing TNFalpha have tumour suppressing effect on human melanoma xenograft. J Gene Med 17(1–2):54–67

    Article  CAS  Google Scholar 

  5. Sasportas LS, Kasmieh R, Wakimoto H et al (2009) Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. Proc Natl Acad Sci U S A 106(12):4822–4827

    Article  CAS  Google Scholar 

  6. Shah K (2012) Mesenchymal stem cells engineered for cancer therapy. Adv Drug Deliv Rev 64(8):739–748

    Article  CAS  Google Scholar 

  7. Knoop K, Kolokythas M, Klutz K et al (2011) Image-guided, tumor stroma-targeted 131I therapy of hepatocellular cancer after systemic mesenchymal stem cell-mediated NIS gene delivery. Mol Ther 19(9):1704–1713

    Article  CAS  Google Scholar 

  8. Kucerova L, Altanerova V, Matuskova M et al (2007) Adipose tissue-derived human mesenchymal stem cells mediated prodrug cancer gene therapy. Cancer Res 67(13):6304–6313

    Article  CAS  Google Scholar 

  9. Ren C, Kumar S, Chanda D et al (2008) Cancer gene therapy using mesenchymal stem cells expressing interferon-beta in a mouse prostate cancer lung metastasis model. Gene Ther 15(21):1446–1453

    Article  CAS  Google Scholar 

  10. Kim SM, Lim JY, Park SI et al (2008) Gene therapy using TRAIL-secreting human umbilical cord blood-derived mesenchymal stem cells against intracranial glioma. Cancer Res 68(23):9614–9623

    Article  CAS  Google Scholar 

  11. Kim SW, Kim SJ, Park SH et al (2013) Complete regression of metastatic renal cell carcinoma by multiple injections of engineered mesenchymal stem cells expressing dodecameric TRAIL and HSV-TK. Clin Cancer Res 19(2):415–427

    Article  CAS  Google Scholar 

  12. McGinley L, McMahon J, Strappe P et al (2011) Lentiviral vector mediated modification of mesenchymal stem cells & enhanced survival in an in vitro model of ischaemia. Stem Cell Res Ther 2(2):12

    Article  CAS  Google Scholar 

  13. Xiang Q, Hong D, Liao Y et al (2017) Overexpression of Gremlin1 in mesenchymal stem cells improves hindlimb ischemia in mice by enhancing cell survival. J Cell Physiol 232(5):996–1007

    Article  CAS  Google Scholar 

  14. Nakashima M, Tachibana K, Iohara K et al (2003) Induction of reparative dentin formation by ultrasound-mediated gene delivery of growth/differentiation factor 11. Hum Gene Ther 14(6):591–597

    Article  CAS  Google Scholar 

  15. Sheyn D, Pelled G, Zilberman Y et al (2008) Nonvirally engineered porcine adipose tissue-derived stem cells: use in posterior spinal fusion. Stem Cells 26(4):1056–1064

    Article  Google Scholar 

  16. Kim HJ, Im GI (2011) Electroporation-mediated transfer of SOX trio genes (SOX-5, SOX-6, and SOX-9) to enhance the chondrogenesis of mesenchymal stem cells. Stem Cells Dev 20(12):2103–2114

    Article  CAS  Google Scholar 

  17. Kim TH, Kim M, Eltohamy M et al (2013) Efficacy of mesoporous silica nanoparticles in delivering BMP-2 plasmid DNA for in vitro osteogenic stimulation of mesenchymal stem cells. J Biomed Mater Res A 101(6):1651–1660

    Article  Google Scholar 

  18. Frisch J, Venkatesan JK, Rey-Rico A et al (2014) Determination of the chondrogenic differentiation processes in human bone marrow-derived mesenchymal stem cells genetically modified to overexpress transforming growth factor-beta via recombinant adeno-associated viral vectors. Hum Gene Ther 25(12):1050–1060

    Article  CAS  Google Scholar 

  19. Joydeep D, Choi YJ, Yasuda H et al (2016) Efficient delivery of C/EBP beta gene into human mesenchymal stem cells via polyethylenimine-coated gold nanoparticles enhances adipogenic differentiation. Sci Rep 6:33784

    Article  CAS  Google Scholar 

  20. Carrillo-Galvez AB, Galvez-Peisl S, Ayllón V et al (2018) Glycoprotein A repetitions predominant (GARP) protects MSCs from mtROS-mediated DNA damage and apoptosis via regulation of TGF-β Under review

    Google Scholar 

  21. Cobo M, Anderson P, Benabdellah K et al (2013) Mesenchymal stem cells expressing vasoactive intestinal peptide ameliorate symptoms in a model of chronic multiple sclerosis. Cell Transplant 22(5):839–854

    Article  Google Scholar 

  22. Carrillo-Galvez AB, Cobo M, Cuevas-Ocana S et al (2015) Mesenchymal stromal cells express GARP/LRRC32 on their surface: effects on their biology and immunomodulatory capacity. Stem Cells 33(1):183–195

    Article  CAS  Google Scholar 

  23. Aslan H, Sheyn D, Gazit D (2009) Genetically engineered mesenchymal stem cells: applications in spine therapy. Regen Med 4(1):99–108

    Article  Google Scholar 

  24. Dey ND, Bombard MC, Roland BP et al (2010) Genetically engineered mesenchymal stem cells reduce behavioral deficits in the YAC 128 mouse model of Huntington’s disease. Behav Brain Res 214(2):193–200

    Article  CAS  Google Scholar 

  25. Hu J, Lang Y, Zhang T et al (2016) Lentivirus-mediated PGC-1alpha overexpression protects against traumatic spinal cord injury in rats. Neuroscience 328:40–49

    Article  CAS  Google Scholar 

  26. Oggu GS, Sasikumar S, Reddy N et al (2017) Gene delivery approaches for mesenchymal stem cell therapy: strategies to increase efficiency and specificity. Stem Cell Rev 13(6):725–740

    Article  CAS  Google Scholar 

  27. Guo H, Zhao N, Gao H et al (2017) Mesenchymal stem cells overexpressing interleukin-35 propagate immunosuppressive effects in mice. Scand J Immunol 86(5):389–395

    Article  CAS  Google Scholar 

  28. Marin-Banasco C, Benabdellah K, Melero-Jerez C et al (2017) Gene therapy with mesenchymal stem cells expressing IFN-ss ameliorates neuroinflammation in experimental models of multiple sclerosis. Br J Pharmacol 174(3):238–253

    Article  CAS  Google Scholar 

  29. Cai SX, Liu AR, He HL et al (2014) Stable genetic alterations of beta-catenin and ROR2 regulate the Wnt pathway, affect the fate of MSCs. J Cell Physiol 229(6):791–800

    Article  CAS  Google Scholar 

  30. Gheisari Y, Azadmanesh K, Ahmadbeigi N et al (2012) Genetic modification of mesenchymal stem cells to overexpress CXCR4 and CXCR7 does not improve the homing and therapeutic potentials of these cells in experimental acute kidney injury. Stem Cells Dev 21(16):2969–2980

    Article  CAS  Google Scholar 

  31. Huang J, Zhang Z, Guo J et al (2010) Genetic modification of mesenchymal stem cells overexpressing CCR1 increases cell viability, migration, engraftment, and capillary density in the injured myocardium. Circ Res 106(11):1753–1762

    Article  CAS  Google Scholar 

  32. Ni X, Ou C, Guo J et al (2017) Lentiviral vector-mediated co-overexpression of VEGF and Bcl-2 improves mesenchymal stem cell survival and enhances paracrine effects in vitro. Int J Mol Med 40(2):418–426

    Article  CAS  Google Scholar 

  33. Wang L, Zhao Y, Cao J et al (2015) Mesenchymal stem cells modified with nerve growth factor improve recovery of the inferior alveolar nerve after mandibular distraction osteogenesis in rabbits. Br J Oral Maxillofac Surg 53(3):279–284

    Article  CAS  Google Scholar 

  34. Ikeda Y, Sakaue M, Chijimatsu R et al (2017) IGF-1 gene transfer to human synovial MSCs promotes their chondrogenic differentiation potential without induction of the hypertrophic phenotype. Stem Cells Int 2017:5804147

    Article  Google Scholar 

  35. Grinev VV, Severin IN, Posrednik DV et al (2012) Highly efficient transfer and stable expression of two genes upon lentivirus transduction of mesenchymal stem cells from human bone marrow. Genetika 48(3):389–400

    CAS  PubMed  Google Scholar 

  36. Choi KS, Ahn SY, Kim TS et al (2011) Characterization and biodistribution of human mesenchymal stem cells transduced with lentiviral-mediated BMP2. Arch Pharm Res 34(4):599–606

    Article  CAS  Google Scholar 

  37. Dodd M, Marquez-Curtis L, Janowska-Wieczorek A et al (2014) Sustained expression of coagulation factor IX by modified cord blood-derived mesenchymal stromal cells. J Gene Med 16(5–6):131–142

    Article  CAS  Google Scholar 

  38. Liu J, Chen W, Zhao Z et al (2013) Reprogramming of mesenchymal stem cells derived from iPSCs seeded on biofunctionalized calcium phosphate scaffold for bone engineering. Biomaterials 34(32):7862–7872

    Article  CAS  Google Scholar 

  39. Zhang XY, La Russa VF, Reiser J (2004) Transduction of bone-marrow-derived mesenchymal stem cells by using lentivirus vectors pseudotyped with modified RD114 envelope glycoproteins. J Virol 78(3):1219–1229

    Article  CAS  Google Scholar 

  40. Qin JY, Zhang L, Clift KL et al (2010) Systematic comparison of constitutive promoters and the doxycycline-inducible promoter. PLoS One 5(5):e10611

    Article  Google Scholar 

  41. Yang WH, Yang C, Xue YQ et al (2013) Regulated expression of lentivirus-mediated GDNF in human bone marrow-derived mesenchymal stem cells and its neuroprotection on dopaminergic cells in vitro. PLoS One 8(5):e64389

    Article  Google Scholar 

  42. Hajizadeh-Saffar E, Tahamtani Y, Aghdami N et al (2015) Inducible VEGF expression by human embryonic stem cell-derived mesenchymal stromal cells reduces the minimal islet mass required to reverse diabetes. Sci Rep 5:9322

    Article  CAS  Google Scholar 

  43. Chang HK, Kim PH, Cho HM et al (2016) Inducible HGF-secreting human umbilical cord blood-derived MSCs produced via TALEN-mediated genome editing promoted angiogenesis. Mol Ther 24(9):1644–1654

    Article  CAS  Google Scholar 

  44. Benabdellah K, Cobo M, Munoz P et al (2011) Development of an all-in-one lentiviral vector system based on the original TetR for the easy generation of Tet-ON cell lines. PLoS One 6(8):e23734

    Article  CAS  Google Scholar 

  45. Benabdellah K, Munoz P, Cobo M et al (2016) Lent-On-Plus Lentiviral vectors for conditional expression in human stem cells. Sci Rep 6:37289

    Article  CAS  Google Scholar 

  46. Moriyama H, Moriyama M, Sawaragi K et al (2013) Tightly regulated and homogeneous transgene expression in human adipose-derived mesenchymal stem cells by lentivirus with tet-off system. PLoS One 8(6):e66274

    Article  CAS  Google Scholar 

  47. Toscano MG, Frecha C, Ortega C et al (2004) Efficient lentiviral transduction of Herpesvirus saimiri immortalized T cells as a model for gene therapy in primary immunodeficiencies. Gene Ther 11(12):956–961

    Article  CAS  Google Scholar 

  48. Benabdellah K, Gutierrez-Guerrero A, Cobo M et al (2014) A chimeric HS4-SAR insulator (IS2) that prevents silencing and enhances expression of lentiviral vectors in pluripotent stem cells. PLoS One 9(1):e84268

    Article  Google Scholar 

  49. Choi JR, Yong KW, Wan Safwani WKZ (2017) Effect of hypoxia on human adipose-derived mesenchymal stem cells and its potential clinical applications. Cell Mol Life Sci 74(14):2587–2600

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Martín .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Martín, F., Tristán-Manzano, M., Maldonado-Pérez, N., Sánchez-Hernández, S., Benabdellah, K., Cobo, M. (2019). Stable Genetic Modification of Mesenchymal Stromal Cells Using Lentiviral Vectors. In: Manfredsson, F., Benskey, M. (eds) Viral Vectors for Gene Therapy. Methods in Molecular Biology, vol 1937. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9065-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9065-8_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9064-1

  • Online ISBN: 978-1-4939-9065-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics