Skip to main content

miRNA Detection by Stem-Loop RT-qPCR in Studying microRNA Biogenesis and microRNA Responsiveness to Abiotic Stresses

  • Protocol
  • First Online:
Plant MicroRNAs

Abstract

This chapter is devoted to a PCR-based method for analyzing the expression level of mature miRNAs which utilizes the TaqMan® technology. Stem-loop RT-qPCR requires preparation of separate cDNA templates for each analyzed miRNA as reverse transcription occurs in the presence of a miRNA-specific stem-loop reverse primer. In quantitative analysis, SYBR® Green is not used but the more sensitive TaqMan® probe that on 5′ end contains a covalently attached fluorophore and on 3′ quencher. When quencher and fluorophore are spatially separated due to nucleolytic DNA polymerase activity, the signal is released and quantified. This section provides a detailed and comprehensive protocol allowing for the successful analysis of mature miRNA levels in analyzed sample. Reverse transcription combined with classic real-time PCR as well as ddPCR™ (Droplet Digital™ PCR) will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pacak A, Barciszewska-Pacak M, Swida-Barteczka A, Kruszka K, Sega P, Milanowska K, Jakobsen I, Jarmolowski A, Szweykowska-Kulinska Z (2016) Heat stress affects Pi-related genes expression and inorganic phosphate deposition/accumulation in barley. Front Plant Sci 7:926

    Article  Google Scholar 

  2. Barciszewska-Pacak M, Milanowska K, Knop K, Bielewicz D, Nuc P, Plewka P, Pacak AM, Vazquez F, Karlowski W, Jarmolowski A, Szweykowska-Kulinska Z (2015) Arabidopsis microRNA expression regulation in a wide range of abiotic stress responses. Front Plant Sci 6:410

    Article  Google Scholar 

  3. Kruszka K, Pacak A, Swida-Barteczka A, Nuc P, Alaba S, Wroblewska Z, Karlowski W, Jarmolowski A, Szweykowska-Kulinska Z (2014) Transcriptionally and post-transcriptionally regulated microRNAs in heat stress response in barley. J Exp Bot 65:6123–6135

    Article  CAS  Google Scholar 

  4. Schommer C, Bresso EG, Spinelli SV, Palatnik JF (2012) Role of microRNA miR319 in plant development. In: MicroRNAs in plant development and stress responses. Springer, New York, pp 29–47

    Chapter  Google Scholar 

  5. Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D (2003) Control of leaf morphogenesis by microRNAs. Nature 425:257–263

    Article  CAS  Google Scholar 

  6. Wang JW, Wang LJ, Mao YB, Cai WJ, Xue HW, Chen XY (2005) Control of root cap formation by MicroRNA-targeted auxin response factors in Arabidopsis. Plant Cell 17:2204–2216

    Article  CAS  Google Scholar 

  7. Bari R, Datt Pant B, Stitt M, Scheible WR (2006) PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol 141:988–999

    Article  CAS  Google Scholar 

  8. Pant BD, Buhtz A, Kehr J, Scheible WR (2008) MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. Plant J 53:731–738

    Article  CAS  Google Scholar 

  9. Xu F, Liu Q, Chen L, Kuang J, Walk T, Wang J, Liao H (2013) Genome-wide identification of soybean microRNAs and their targets reveals their organ-specificity and responses to phosphate starvation. BMC Genomics 14:66

    Article  CAS  Google Scholar 

  10. Pall GS, Hamilton AJ (2008) Improved northern blot method for enhanced detection of small RNA. Nat Protoc 3:1077–1084

    Article  CAS  Google Scholar 

  11. Wang X, Tong Y, Wang S (2010) Rapid and accurate detection of plant miRNAs by liquid northern hybridization. Int J Mol Sci 11:3138–3148

    Article  CAS  Google Scholar 

  12. Várallyay É, Burgyán J, Havelda Z (2007) Detection of microRNAs by Northern blot analyses using LNA probes. Methods 43:140–145

    Article  Google Scholar 

  13. Válóczi A, Hornyik C, Varga N, Burgyán J, Kauppinen S, Havelda Z (2004) Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes. Nucleic Acids Res 32:e175–e175

    Article  Google Scholar 

  14. Yao X, Huang H, Xu L (2012) In situ detection of mature miRNAs in plants using LNA-modified DNA probes. Methods Mol Biol 883:143–154

    Article  CAS  Google Scholar 

  15. Javelle M, Timmermans MC (2012) In situ localization of small RNAs in plants by using LNA probes. Nat Protoc 7:533–541

    Article  CAS  Google Scholar 

  16. Niedojadło J, Dełeńko K, Niedojadło K (2016) Regulation of poly (A) RNA retention in the nucleus as a survival strategy of plants during hypoxia. RNA Biol 13:531–543

    Article  Google Scholar 

  17. Yang X, Li L (2012) Analyzing the microRNA transcriptome in plants using deep sequencing data. Biology 1:297–310

    Article  CAS  Google Scholar 

  18. Gunaratne PH, Coarfa C, Soibam B, Tandon A (2012) miRNA data analysis: next-gen sequencing. Methods Mol Biol 822:273–288

    Article  CAS  Google Scholar 

  19. Motameny S, Wolters S, Nürnberg P, Schumacher B (2010) Next generation sequencing of miRNAs–strategies, resources and methods. Genes 1:70–84

    Article  CAS  Google Scholar 

  20. Shi R, Sun YH, Zhang XH, Chiang VL (2012) Poly(T) adaptor RT-PCR. Methods Mol Biol 822:53–66

    Article  CAS  Google Scholar 

  21. Prigge MJ, Wagner DR (2001) The Arabidopsis serrate gene encodes a zinc-finger protein required for normal shoot development. Plant Cell 13:1263–1279

    Article  CAS  Google Scholar 

  22. Grigg SP, Canales C, Hay A, Tsiantis M (2005) SERRATE coordinates shoot meristem function and leaf axial patterning in Arabidopsis. Nature 437:1022–1026

    Article  CAS  Google Scholar 

  23. Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17

    Article  CAS  Google Scholar 

  24. Zielezinski A, Dolata J, Alaba S, Kruszka K, Pacak A, Swida-Barteczka A, Knop K, Stepien A, Bielewicz D, Pietrykowska H (2015) mirEX 2.0-an integrated environment for expression profiling of plant microRNAs. BMC Plant Biol 15:144

    Article  Google Scholar 

  25. Knop K, Stepien A, Barciszewska-Pacak M, Taube M, Bielewicz D, Michalak M, Borst JW, Jarmolowski A, Szweykowska-Kulinska Z (2017) Active 5΄ splice sites regulate the biogenesis efficiency of Arabidopsis microRNAs derived from intron-containing genes. Nucleic Acids Res 45:2757–2775

    CAS  Google Scholar 

  26. Hindson BJ, Ness KD, Masquelier DA, Belgrader P, Heredia NJ, Makarewicz AJ, Bright IJ, Lucero MY, Hiddessen AL, Legler TC, Kitano TK, Hodel MR, Petersen JF, Wyatt PW, Steenblock ER, Shah PH, Bousse LJ, Troup CB, Mellen JC, Wittmann DK, Erndt NG, Cauley TH, Koehler RT, So AP, Dube S, Rose KA, Montesclaros L, Wang S, Stumbo DP, Hodges SP, Romine S, Milanovich FP, White HE, Regan JF, Karlin-Neumann GA, Hindson CM, Saxonov S, Colston BW (2011) High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem 83:8604–8610

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The project is supported by the National Science Centre, Poland based on the decisions number DEC-2013/11/B/NZ9/01761, UMO-2015/19/N/NZ9/00218, 2013/10/A/NZ1/00557, UMO-2016/23/N/NZ1/00005, UMO-2016/21/B/NZ9/00550, UMO-2016/23/B/NZ9/00857 and UMO-2016/23/B/NZ9/00862, by the Foundation for Polish Science (grants START 2017 to Agata S. and Katarzyna K.), and by KNOW RNA Research Centre in Poznań (No. 01/KNOW2/2014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrzej Pacak or Zofia Szweykowska-Kulinska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Smoczynska, A. et al. (2019). miRNA Detection by Stem-Loop RT-qPCR in Studying microRNA Biogenesis and microRNA Responsiveness to Abiotic Stresses. In: de Folter, S. (eds) Plant MicroRNAs. Methods in Molecular Biology, vol 1932. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9042-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9042-9_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9041-2

  • Online ISBN: 978-1-4939-9042-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics