Skip to main content

Tryptophan Scanning Mutagenesis of EF-Hand Motifs

  • Protocol
  • First Online:
Calcium-Binding Proteins of the EF-Hand Superfamily

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1929))

Abstract

Ca2+ regulation in living systems occurs via specific structural alterations, subtle or drastic, in the Ca2+-binding domains of sensor proteins. Sensor proteins perform designated nonredundant roles within the dense network of Ca2+-binding proteins. A detailed understanding of the structural changes in calcium sensor proteins due to Ca2+ spikes that vary spatially, temporally, and in magnitude would provide better insights into the mechanism of Ca2+ sensing. This chapter describes a method to study various stages during apo to the holo transition of Ca2+-binding proteins by Trp-mediated scanning of individual EF-hand motifs. We describe the applicability of this procedure to caldendrin, which is a neuronal Ca2+-binding protein and to integrin-binding protein. Tryptophan mutants of full-length caldendrin were designed to reveal local structural changes in each EF-hand of the protein. This method, referred to as “EF-hand scanning tryptophan mutagenesis,” not only allows the identification of canonical and noncanonical EF-hands using very low concentrations of protein but also enables visualization of the hierarchical filling of Ca2+ into the canonical EF-hands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium: calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529

    Article  CAS  Google Scholar 

  2. Zhou Y, Xue S, Yang JJ (2013) Calciomics: integrative studies of Ca2+-binding proteins and their interactomes in biological systems. Metallomics 5:29–42

    Article  CAS  Google Scholar 

  3. Raghuram V, Sharma Y, Kreutz MR (2012) Ca2+ sensor proteins in dendritic spines: a race for Ca2+. Front Mol Neurosci 5:61

    Article  CAS  Google Scholar 

  4. Mäler L, Blankenship J, Rance M, Chazin WJ (2000) Site–site communication in the EF-hand Ca2+-binding protein calbindin D9k. Nat Struct Mol Biol 7:245–250

    Article  Google Scholar 

  5. Wojciechowski D, Fischer M, Fahlke C (2015) Tryptophan scanning mutagenesis identifies the molecular determinants of distinct barttin functions. J Biol Chem 290:18732–18743

    Article  CAS  Google Scholar 

  6. Deacon LJ, Billones H, Galyean AA, Donaldson T, Pennacchio A, Iozzino L, Dattelbaum JD (2014) Tryptophan-scanning mutagenesis of the ligand binding pocket in Thermotoga maritima arginine-binding protein. Biochimie 99:208–214

    Article  CAS  Google Scholar 

  7. De Feo CJ, Mootien S, Unger VM (2010) Tryptophan scanning analysis of the membrane domain of CTR-copper transporters. J Membr Biol 234:113–123

    Article  CAS  Google Scholar 

  8. Yamniuk AP, Silver DM, Anderson KL, Martin SR, Vogel HJ (2007) Domain stability and metal-induced folding of calcium-and integrin-binding protein 1. Biochemistry 46:7088–7098

    Article  CAS  Google Scholar 

  9. Kiran U, Regur P, Kreutz MR, Sharma Y, Chakraborty A (2017) Intermotif communication induces hierarchical Ca2+ filling of Caldendrin. Biochemistry 56:2467–2476

    Article  CAS  Google Scholar 

  10. Seidenbecher CI, Langnaese K, Sanmartí-Vila L, Boeckers TM, Smalla KH, Sabel BA, Garner CC, Gundelfinger ED, Kreutz MR (1998) Caldendrin, novel neuronal calcium-binding protein confined to the somatodendritic compartment. J Biol Chem 273:21324–21331

    Article  CAS  Google Scholar 

  11. Reddy PP, Raghuram V, Hradsky J, Spilker C, Chakraborty A, Sharma Y, Kreutz MR (2014) Molecular dynamics of the neuronal EF-hand Ca2+-sensor Caldendrin. PLoS One 9:e103186

    Article  Google Scholar 

  12. Théret I, Baladi S, Cox JA, Sakamoto H, Craescu CT (2000) Sequential calcium binding to the regulatory domain of calcium vector protein reveals functional asymmetry and a novel mode of structural rearrangement. Biochemistry 39:7920–7926

    Article  Google Scholar 

  13. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201

    Article  CAS  Google Scholar 

  14. Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Richardson DC (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66:12–21

    Article  CAS  Google Scholar 

  15. Tina KG, Bhadra R, Srinivasan N (2007) PIC: protein interactions calculator. Nucleic Acids Res 35:473–476

    Article  Google Scholar 

  16. Hung HC, Chen YH, Liu GY, Lee HJ, Chang GG (2003) Equilibrium protein folding-unfolding process involving multiple intermediates. Bull Math Biol 65:553–570

    Article  CAS  Google Scholar 

  17. Muralidhar D, Jobby MK, Kannan K, Annapurna V, Chary KV, Jeromin A, Sharma Y (2005) Equilibrium unfolding of neuronal calcium sensor-1: N-terminal myristoylation influences unfolding and reduces the protein stiffening in the presence of calcium. J Biol Chem 280:15569–15578

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the CSIR fast-track SRA to AC, CSIR, DST, and DBT grants to YS and DFG (Kr1879/3-1) to MRK.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yogendra Sharma or Asima Chakraborty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kiran, U., Kreutz, M.R., Sharma, Y., Chakraborty, A. (2019). Tryptophan Scanning Mutagenesis of EF-Hand Motifs. In: Heizmann, C. (eds) Calcium-Binding Proteins of the EF-Hand Superfamily. Methods in Molecular Biology, vol 1929. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9030-6_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9030-6_35

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9029-0

  • Online ISBN: 978-1-4939-9030-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics