Skip to main content

Calcium-Induced Protein Folding in Calumenin and Calmodulin

  • Protocol
  • First Online:
Calcium-Binding Proteins of the EF-Hand Superfamily

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1929))

Abstract

Binding of calcium — and small molecules in general — often induce conformational changes in large molecules and complexes. The degree and type of change varies, but the resulting shift in specific affinities ultimately induces a physiological response. It is therefore important for our understanding of responses at the cellular level to define coupled changes at the molecular level.

Calumenin, a six-EF-hand calcium-binding protein localized in the endoplasmic reticulum, undergoes substantial calcium-induced rearrangement. We have demonstrated how calumenin changes from being unfolded in the absence of calcium to a compact trilobal fold in the presence of calcium (Mazzorana et al., PLoS One 11:e0151547, 2016).

Here, we describe protocols for the expression and purification of calumenin and calmodulin, another EF-hand protein modulated by calcium, along with protocols for biophysical techniques used to characterize calcium-induced changes to protein conformation. Analytical size-exclusion chromatography in the presence and absence of calcium provides an informed indication of any larger conformational movements. Circular dichroism spectroscopy reveals alterations to the secondary or tertiary structure, while small-angle X-ray scattering explores changes further providing low-resolution conformational details.

Surface plasmon resonance estimates binding kinetics and affinities completing the biophysical description of these events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Du X, Li Y, Xia YL et al (2016) Insights into protein-ligand interactions: mechanisms, models, and methods. Int J Mol Sci 17:144

    Article  Google Scholar 

  2. Berridge MJ (1997) Elementary and global aspects of calcium signalling. J Physiol 499(Pt 2):291–306

    Article  CAS  Google Scholar 

  3. Mazzorana M, Hussain R, Sorensen T (2016) Ca-dependent folding of human calumenin. PLoS One 11:e0151547

    Article  Google Scholar 

  4. Sahin E, Roberts CJ (2012) Size-exclusion chromatography with multi-angle light scattering for elucidating protein aggregation mechanisms. Methods Mol Biol 899:403–423

    Article  CAS  Google Scholar 

  5. Scarlett G, Siligardi G, Kneale GG (2015) Circular dichroism for the analysis of protein-DNA interactions. Methods Mol Biol 1334:299–312

    Article  CAS  Google Scholar 

  6. Drescher DG, Selvakumar D, Drescher MJ (2018) Analysis of protein interactions by surface Plasmon resonance. Adv Protein Chem Struct Biol 110:1–30

    Article  Google Scholar 

  7. Rambo RP, Tainer JA (2010) Bridging the solution divide: comprehensive structural analyses of dynamic RNA, DNA, and protein assemblies by small-angle X-ray scattering. Curr Opin Struct Biol 20:128–137

    Article  CAS  Google Scholar 

  8. Iida S, Potter JD (1986) Calcium binding to calmodulin. Cooperativity of the calcium-binding sites. J Biochem 99:1765–1772

    Article  CAS  Google Scholar 

  9. Zhang M, Abrams C, Wang L et al (2012) Structural basis for calmodulin as a dynamic calcium sensor. Structure 20:911–923

    Article  CAS  Google Scholar 

  10. Asiani KR, Williams H, Bird L et al (2016) SilE is an intrinsically disordered periplasmic “molecular sponge” involved in bacterial silver resistance. Mol Microbiol 101:731–742

    Article  CAS  Google Scholar 

  11. Wright PE, Dyson HJ (2015) Intrinsically disordered proteins in cellular signalling and regulation. Nat Rev Mol Cell Biol 16:18–29

    Article  CAS  Google Scholar 

  12. Ullah R, Shah MA, Tufail S et al (2016) Activity of the human rhinovirus 3C protease studied in various buffers, additives and detergents solutions for recombinant protein production. PLoS One 11:e0153436

    Article  Google Scholar 

  13. Mossessova E, Lima CD (2000) Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast. Mol Cell 5:865–876

    Article  CAS  Google Scholar 

  14. Berrow NS, Alderton D, Sainsbury S et al (2007) A versatile ligation-independent cloning method suitable for high-throughput expression screening applications. Nucleic Acids Res 35:e45

    Article  Google Scholar 

  15. Berrow NS, Alderton D, Owens RJ (2009) The precise engineering of expression vectors using high-throughput In-Fusion PCR cloning. Methods Mol Biol 498:75–90

    Article  CAS  Google Scholar 

  16. Studier FW (2005) Protein production by auto-induction in high density shaking cultures. Protein Expr Purif 41:207–234

    Article  CAS  Google Scholar 

  17. Javorfi T, Hussain R, Myatt D et al (2010) Measuring circular dichroism in a capillary cell using the b23 synchrotron radiation CD beamline at diamond light source. Chirality 22(Suppl 1):E149–E153

    Article  CAS  Google Scholar 

  18. Bers DM, Patton CW, Nuccitelli R (1994) A practical guide to the preparation of Ca2+ buffers. Methods Cell Biol 40:3–29

    Article  CAS  Google Scholar 

  19. Sreerama N, Woody RW (2000) Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal Biochem 287:252–260

    Article  CAS  Google Scholar 

  20. Rambo RP, Tainer JA (2013) Accurate assessment of mass, models and resolution by small-angle scattering. Nature 496:477–481

    Article  CAS  Google Scholar 

  21. Kursula P (2014) Crystallographic snapshots of initial steps in the collapse of the calmodulin central helix. Acta Crystallogr D Biol Crystallogr 70:24–30

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Rohanah Hussain, Tamas Javorfi, Robert Rambo, and Gemma Harris for expert help and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Lykke-Møller Sørensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mazzorana, M., Sørensen, T.LM. (2019). Calcium-Induced Protein Folding in Calumenin and Calmodulin. In: Heizmann, C. (eds) Calcium-Binding Proteins of the EF-Hand Superfamily. Methods in Molecular Biology, vol 1929. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9030-6_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9030-6_32

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9029-0

  • Online ISBN: 978-1-4939-9030-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics