Skip to main content

Monitoring Interactions Between S100B and the Dopamine D2 Receptor Using NMR Spectroscopy

  • Protocol
  • First Online:
Calcium-Binding Proteins of the EF-Hand Superfamily

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1929))

Abstract

S100B is a dimeric EF-hand protein that undergoes a calcium-induced conformational change and interacts with a wide range of proteins to modulate their functions. The dopamine D2 receptor is one potential S100B binding partner that may play a key role in neurological processing. In this chapter, we describe the use of NMR spectroscopy to examine the interaction between calcium-bound S100B and the third intracellular loop (IC3) from the dopamine D2 receptor. We provide details that allow the strength of the interaction (K d) between the two proteins to be determined and the IC3 site of interaction on the structure of S100B to be identified. Both these characteristics can be identified from a single series of nondestructive experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Luker KE, Piwnica-Worms D (2004) Optimizing luciferase protein fragment complementation for bioluminescent imaging of protein-protein interactions in live cells and animals. Methods Enzymol 385:349–360. https://doi.org/10.1016/S0076-6879(04)85019-5

    Article  CAS  PubMed  Google Scholar 

  2. Nohe A, Petersen NO (2004) Analyzing protein-protein interactions in cell membranes. BioEssays 26:196–203. https://doi.org/10.1002/bies.10380

    Article  CAS  PubMed  Google Scholar 

  3. Donato R, Sorci G, Riuzzi F et al (2009) S100B’s double life: intracellular regulator and extracellular signal. Biochim Biophys Acta 1793:1008–1022. https://doi.org/10.1016/j.bbamcr.2008.11.009

    Article  CAS  PubMed  Google Scholar 

  4. Liu J, Wang H, Zhang L et al (2011) S100B transgenic mice develop features of Parkinson’s disease. Arch Med Res 42:1–7. https://doi.org/10.1016/j.arcmed.2011.01.005

    Article  CAS  PubMed  Google Scholar 

  5. Leclerc E, Sturchler E, Vetter SW (2010) The S100B/RAGE axis in Alzheimer’s disease. Cardiovasc Psychiatry Neurol 2010:539581. https://doi.org/10.1155/2010/539581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rezvanpour A, Shaw GS (2009) Unique S100 target protein interactions. Gen Physiol Biophys 28:F39–F46

    Article  Google Scholar 

  7. Santamaria-Kisiel L, Rintala-Dempsey AC, Shaw GS (2006) Calcium-dependent and -independent interactions of the S100 protein family. Biochem J 396:201–214. https://doi.org/10.1042/BJ20060195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Heizmann CW, Fritz G, Schäfer BW (2002) S100 proteins: structure, functions and pathology. Front Biosci 7:d1356–d1368. https://doi.org/10.2741/heizmann

    Article  CAS  PubMed  Google Scholar 

  9. Fritz G, Heizmann CW (2006) 3D Structures of the calcium and zinc binding S100 proteins. In: Handbook of metalloproteins. John Wiley & Sons, Ltd, Hoboken, NJ. https://doi.org/10.1002/0470028637

    Chapter  Google Scholar 

  10. Ostendorp T, Leclerc E, Galichet A et al (2007) Structural and functional insights into RAGE activation by multimeric S100B. EMBO J 26:3868–3878. https://doi.org/10.1038/sj.emboj.7601805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. McClintock KA, Shaw GS (2003) A novel S100 target conformation is revealed by the solution structure of the Ca2+-S100B-TRTK-12 complex. J Biol Chem 278:6251–6257. https://doi.org/10.1074/jbc.M210622200

    Article  CAS  PubMed  Google Scholar 

  12. Inman KG, Yang R, Rustandi RR et al (2002) Solution NMR structure of S100B bound to the high-affinity target peptide TRTK-12. J Mol Biol 324:1003–1014. https://doi.org/10.1016/S0022-2836(02)01152-X

    Article  CAS  PubMed  Google Scholar 

  13. Gógl G, Alexa A, Kiss B et al (2016) Structural Basis of Ribosomal S6 Kinase 1 (RSK1) Inhibition by S100B Protein. J Biol Chem 291:11–27. https://doi.org/10.1074/jbc.M115.684928

    Article  CAS  PubMed  Google Scholar 

  14. Rustandi RR, Drohat AC, Baldisseri DM et al (1998) The Ca2+-dependent interaction of S100B(ββ) with a peptide derived from p53. Biochemistry 37:1951–1960. https://doi.org/10.1021/bi972701n

    Article  CAS  PubMed  Google Scholar 

  15. Rustandi RR, Baldisseri DM, Weber DJ (2000) Structure of the negative regulatory domain of p53 bound to S100B(ββ). Nat Struct Biol 7:570–574. https://doi.org/10.1038/76797

    Article  CAS  PubMed  Google Scholar 

  16. Donato R, Cannon BR, Sorci G et al (2013) Functions of S100 proteins. Curr Mol Med 13:24–57. https://doi.org/10.2174/1566524011307010024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu Y, Buck DC, Neve KA (2008) Novel interaction of the dopamine D2 receptor and the Ca2+ binding protein S100B: role in D2 receptor function. Mol Pharmacol 74:371–378. https://doi.org/10.1124/mol.108.044925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Moritz AE, Benjamin Free R, Sibley DR (2018) Advances and challenges in the search for D2 and D3 dopamine receptor-selective compounds. Cell Signal 41:75–81. https://doi.org/10.1016/j.cellsig.2017.07.003

    Article  CAS  PubMed  Google Scholar 

  19. Urs NM, Peterson SM, Caron MG (2017) New concepts in dopamine D2 receptor biased signaling and implications for Schizophrenia therapy. Biol Psychiatry 81:78–85. https://doi.org/10.1016/j.biopsych.2016.10.011

    Article  CAS  PubMed  Google Scholar 

  20. Katzung BG (2001) Introduction to autonomic pharmacology. In: Basic and clinical pharmacology, 8th edn. The McGraw Hill Companies, Inc, New York, NY

    Google Scholar 

  21. Stanwood GD (2008) Protein-protein interactions and dopamine D2 receptor signaling: a calcium connection. Mol Pharmacol 74:317–319. https://doi.org/10.1124/mol.108.049098

    Article  CAS  PubMed  Google Scholar 

  22. Senogles SE, Heimert TL, Odife ER, Quasney MW (2004) A region of the third intracellular loop of the short form of the D2 dopamine receptor dictates Gi coupling specificity. J Biol Chem 279:1601–1606. https://doi.org/10.1074/jbc.M309792200

    Article  CAS  PubMed  Google Scholar 

  23. Dempsey BR, Shaw GS (2011) Identification of calcium-independent and calcium-enhanced binding between S100B and the dopamine D2 receptor. Biochemistry 50:9056–9065. https://doi.org/10.1021/bi201054x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xing S, Wallmeroth N, Berendzen KW, Grefen C (2016) Techniques for the analysis of protein-protein interactions in vivo. Plant Physiol 171:727–758. https://doi.org/10.1104/pp.16.00470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. O’Connell MR, Gamsjaeger R, Mackay JP (2009) The structural analysis of protein-protein interactions by NMR spectroscopy. Proteomics 9:5224–5232. https://doi.org/10.1002/pmic.200900303

    Article  CAS  PubMed  Google Scholar 

  26. Smith SP, Barber KR, Dunn SD, Shaw GS (1996) Structural influence of cation binding to recombinant human brain S100b: Evidence for calcium-induced exposure of a hydrophobic surface. Biochemistry 35:8805–8814. https://doi.org/10.1021/bi952698c

    Article  CAS  PubMed  Google Scholar 

  27. Smith SP, Shaw GS (1997) Assignment and secondary structure of calcium-bound human S100B. J Biomol NMR 10:77–88

    Article  CAS  Google Scholar 

  28. Delaglio F, Grzesiek S, Vuister GW et al (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293. https://doi.org/10.1007/BF00197809

    Article  CAS  PubMed  Google Scholar 

  29. Johnson BA, Blevins RA (1994) NMR View: A computer program for the visualization and analysis of NMR data. J Biomol NMR 4:603–614. https://doi.org/10.1007/BF00404272

    Article  CAS  PubMed  Google Scholar 

  30. Baryshnikova OK, Williams TC, Sykes BD (2008) Internal pH indicators for biomolecular NMR. J Biomol NMR 41:5–7. https://doi.org/10.1007/s10858-008-9234-6

    Article  CAS  PubMed  Google Scholar 

  31. Rintala-Dempsey AC, Santamaria-Kisiel L, Liao Y et al (2006) Insights into S100 target specificity examined by a new interaction between S100A11 and annexin A2. Biochemistry 45:14695–14705. https://doi.org/10.1021/bi061754e

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This research was supported by a research grant (MOP 93520) from the Canadian Institutes of Health Research (GSS). We thank Brian Dempsey for the helpful discussions. Yuning Wang and Roya Tadayon contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary S. Shaw .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wang, Y., Tadayon, R., Shaw, G.S. (2019). Monitoring Interactions Between S100B and the Dopamine D2 Receptor Using NMR Spectroscopy. In: Heizmann, C. (eds) Calcium-Binding Proteins of the EF-Hand Superfamily. Methods in Molecular Biology, vol 1929. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9030-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9030-6_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9029-0

  • Online ISBN: 978-1-4939-9030-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics