Skip to main content

Quantitation of Macropinocytosis in Cancer Cells

  • Protocol
  • First Online:
Cancer Metabolism

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1928))

Abstract

Macropinocytosis has emerged as an important nutrient supply pathway that sustains cell growth of cancer cells within the nutrient-poor tumor microenvironment. By internalizing extracellular fluid through this bulk endocytic pathway, albumin is supplied to the cancer cells, which, after degradation, serves as an amino acid source to meet the high nutrient demands of these highly proliferating cells. Here, we describe a streamlined protocol for visualization and quantitation of macropinosomes in adherent cancer cells grown in vitro. The determination of the “macropinocytic index” provides a tool for measuring the extent to which this internalization pathway is utilized within the cancer cells and allows for comparison between different cell lines and treatments. The protocol provided herein has been optimized for reproducibility and is readily adaptable to multiple conditions and settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Doherty GJ, McMahon HT (2009) Mechanisms of endocytosis. In: Annual review of biochemistry, vol 78. Annual Reviews, Palo Alto, CA, pp 857–902. https://doi.org/10.1146/annurev.biochem.78.081307.110540

    Chapter  Google Scholar 

  2. Lim JP, Gleeson PA (2011) Macropinocytosis: an endocytic pathway for internalising large gulps. Immunol Cell Biol 89(8):836–843. https://doi.org/10.1038/icb.2011.20

    Article  CAS  PubMed  Google Scholar 

  3. Commisso C, Davidson SM, Soydaner-Azeloglu RG, Parker SJ, Kamphorst JJ, Hackett S, Grabocka E, Nofal M, Drebin JA, Thompson CB, Rabinowitz JD, Metallo CM, Vander Heiden MG, Bar-Sagi D (2013) Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 497(7451):633–637. https://doi.org/10.1038/nature12138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Seguin L, Camargo MF, Wettersten HI, Kato S, Desgrosellier JS, von Schalscha T, Elliott KC, Cosset E, Lesperance J, Weis SM, Cheresh DA (2017) Galectin-3, a druggable vulnerability for KRAS-addicted cancers. Cancer Discov 7(12):1464–1479. https://doi.org/10.1158/2159-8290.cd-17-0539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bar-Sagi D, Feramisco JR (1986) Induction of membrane ruffling and fluid-phase pinocytosis in quiescent fibroblasts by ras proteins. Science (New York, NY) 233(4768):1061–1068. https://doi.org/10.1126/science.3090687

    Article  CAS  Google Scholar 

  6. Amyere M, Payrastre B, Krause U, Van Der Smissen P, Veithen A, Courtoy PJ (2000) Constitutive macropinocytosis in oncogene-transformed fibroblasts depends on sequential permanent activation of phosphoinositide 3-kinase and phospholipase C. Mol Biol Cell 11(10):3453–3467

    Article  CAS  Google Scholar 

  7. Fennell M, Commisso C, Ramirez C, Garippa R, Bar-Sagi D (2015) High-content, full genome siRNA screen for regulators of oncogenic HRAS-driven macropinocytosis. Assay Drug Dev Technol 13(7):347–355. https://doi.org/10.1089/adt.2015.660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kamphorst JJ, Nofal M, Commisso C, Hackett SR, Lu WY, Grabocka E, Vander Heiden MG, Miller G, Drebin JA, Bar-Sagi D, Thompson CB, Rabinowitz JD (2015) Human pancreatic cancer tumors are nutrient poor and tumor cells actively scavenge extracellular protein. Cancer Res 75(3):544–553. https://doi.org/10.1158/0008-5472.can-14-2211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Recouvreux MV, Commisso C (2017) Macropinocytosis: a metabolic adaptation to nutrient stress in cancer. Front Endocrinol 8. https://doi.org/10.3389/fendo.2017.00261

  10. Davidson SM, Jonas O, Keibler MA, Hou HW, Luengo A, Mayers JR, Wyckoff J, Del Rosario AM, Whitman M, Chin CR, Condon KJ, Lammers A, Kellersberger KA, Stall BK, Stephanopoulos G, Bar-Sagi D, Han J, Rabinowitz JD, Cima MJ, Langer R, Vander Heiden MG (2017) Direct evidence for cancer-cell-autonomous extracellular protein catabolism in pancreatic tumors. Nat Med 23(2):235–241. https://doi.org/10.1038/nm.4256

    Article  CAS  PubMed  Google Scholar 

  11. Mooren OL, Galletta BJ, Cooper JA (2012) Roles for actin assembly in endocytosis. In: Kornberg RD (ed) Annual review of biochemistry, vol 81. Annual Reviews, Palo Alto, CA, pp 661–686. https://doi.org/10.1146/annurev-biochem-060910-094416

    Chapter  Google Scholar 

  12. Swanson JA (2008) Shaping cups into phagosomes and macropinosomes. Nat Rev Mol Cell Biol 9(8):639–649. https://doi.org/10.1038/nrm2447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Koivusalo M, Welch C, Hayashi H, Scott CC, Kim M, Alexander T, Touret N, Hahn KM, Grinstein S (2010) Amiloride inhibits macropinocytosis by lowering submembranous pH and preventing Rac1 and Cdc42 signaling. J Cell Biol 188(4):547–563. https://doi.org/10.1083/jcb.200908086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Counillon L, Scholz W, Lang HJ, Pouyssegur J (1993) Pharmacological characterization of stably transfected NA+/H+ antiporter isoforms using amiloride analogs and a new inhibitor exhibiting antiischemic properties. Mol Pharmacol 44(5):1041–1045

    CAS  PubMed  Google Scholar 

  15. Commisso C, Flinn RJ, Bar-Sagi D (2014) Determining the macropinocytic index of cells through a quantitative image-based assay. Nat Protoc 9(1):182–192. https://doi.org/10.1038/nprot.2014.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang JTH, Teasdale RD, Liebl D (2014) Macropinosome quantitation assay. MethodsX 1:36–41. https://doi.org/10.1016/j.mex.2014.05.002

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cosimo Commisso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Galenkamp, K.M.O., Alas, B., Commisso, C. (2019). Quantitation of Macropinocytosis in Cancer Cells. In: Haznadar, M. (eds) Cancer Metabolism. Methods in Molecular Biology, vol 1928. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9027-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9027-6_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9026-9

  • Online ISBN: 978-1-4939-9027-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics