Skip to main content

Hyperpolarized MRI for Studying Tumor Metabolism

  • Protocol
  • First Online:
  • 4142 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1928))

Abstract

Hyperpolarized magnetic resonance imaging (MRI) can be used to detect real-time in vivo tumor metabolism. Dissolution dynamic nuclear polarization method increases polarization of 13C-labeled molecules, typically [1-13C]pyruvate, which can be injected into an animal during MRI scanning. Increased polarization leads to a higher observed signal, which allows for the detection and imaging of the transfer of 13C-label between the injected marker molecule, pyruvate, and its metabolic products, most importantly lactate. This information can be used to assess the metabolic status of the tumor, for example, during therapy. Here, the basic methodology and data analysis for a preclinical hyperpolarized pyruvate experiment are described.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ardenkjaer-Larsen JH, Fridlund B, Gram A et al (2003) Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR. Proc Natl Acad Sci U S A 100:10158–10163

    Article  CAS  Google Scholar 

  2. Nelson SJ, Kurhanewicz J, Vigneron DB et al (2013) Metabolic imaging of patients with prostate cancer using hyperpolarized [1-13C]pyruvate. Sci Transl Med 5:198ra108

    Article  Google Scholar 

  3. Brindle KM, Bohndiek SE, Gallagher FA, Kettunen MI (2011) Tumor imaging using hyperpolarized 13C magnetic resonance spectroscopy. Magn Reson Med 66:505–519

    Article  Google Scholar 

  4. Golman K, Zandt RI, Lerche M et al (2006) Metabolic imaging by hyperpolarized 13C magnetic resonance imaging for in vivo tumor diagnosis. Cancer Res 66:10855–10860

    Article  CAS  Google Scholar 

  5. Albers MJ, Bok R, Chen AP et al (2008) Hyperpolarized 13C lactate, pyruvate, and alanine: noninvasive biomarkers for prostate cancer detection and grading. Cancer Res 68:8607–8615

    Article  CAS  Google Scholar 

  6. Serrao EM, Kettunen MI, Rodrigues TB et al (2016) MRI with hyperpolarized [1-13C]pyruvate detects advanced pancreatic preneoplasia prior to invasive disease in a mouse model. Gut 65:465–475

    Article  CAS  Google Scholar 

  7. Day SE, Kettunen MI, Gallagher FA et al (2007) Detecting tumor response to treatment using hyperpolarized 13C magnetic resonance imaging and spectroscopy. Nat Med 13:1382–1387

    Article  CAS  Google Scholar 

  8. Malinowski RM, Lipso KW, Lerche MH, Ardenkjaer-Larsen JH (2016) Dissolution Dynamic Nuclear Polarization capability study with fluid path. J Magn Reson 272:141–146

    Article  CAS  Google Scholar 

  9. Ardenkjaer-Larsen JH, Leach AM, Clarke N et al (2011) Dynamic nuclear polarization polarizer for sterile use intent. NMR Biomed 24:927–932

    Article  CAS  Google Scholar 

  10. Mayer D, Yen YF, Levin YS et al (2010) In vivo application of sub-second spiral chemical shift imaging (CSI) to hyperpolarized 13C metabolic imaging: comparison with phase-encoded CSI. J Magn Reson 204:340–345

    Article  CAS  Google Scholar 

  11. Wiesinger F, Weidl E, Menzel MI et al (2012) IDEAL spiral CSI for dynamic metabolic MR imaging of hyperpolarized [1-13C]pyruvate. Magn Reson Med 68:8–16

    Article  CAS  Google Scholar 

  12. Lau AZ, Chen AP, Hurd RE, Cunningham CH (2011) Spectral-spatial excitation for rapid imaging of DNP compounds. NMR Biomed 24:988–996

    Article  CAS  Google Scholar 

  13. Gallagher FA, Kettunen MI, Hu DE et al (2009) Production of hyperpolarized [1,4-13C2]malate from [1,4-13C2]fumarate is a marker of cell necrosis and treatment response in tumors. Proc Natl Acad Sci U S A 106:19801–19806

    Article  CAS  Google Scholar 

  14. Gallagher FA, Kettunen MI, Day SE et al (2008) Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate. Nature 453:940–943

    Article  CAS  Google Scholar 

  15. von Morze C, Larson PE, Hu S et al (2012) Investigating tumor perfusion and metabolism using multiple hyperpolarized 13C compounds: HP001, pyruvate and urea. Magn Reson Imaging 30:305–311

    Article  Google Scholar 

  16. Rodrigues TB, Serrao EM, Kennedy BW et al (2014) Magnetic resonance imaging of tumor glycolysis using hyperpolarized 13C-labeled glucose. Nat Med 20:93–97

    Article  CAS  Google Scholar 

  17. Wishart DS, Feunang YD, Marcu A et al (2018) HMDB 4.0 — the human metabolome database for 2018. Nucleic Acids Res 46:D608–D617

    Article  CAS  Google Scholar 

  18. Johannesson H, Macholl S, Ardenkjaer-Larsen JH (2009) Dynamic nuclear polarization of [1-13C]pyruvic acid at 4.6 tesla. J Magn Reson 197:167–175

    Article  CAS  Google Scholar 

  19. Peterson ET, Gordon JW, Erickson MG et al (2011) Dynamic nuclear polarization system output volume reduction using inert fluids. J Magn Reson Imaging 33:1003–1008

    Article  Google Scholar 

  20. Serrao EM, Rodrigues TB, Gallagher FA et al (2016) Effects of fasting on serial measurements of hyperpolarized [1-13C]pyruvate metabolism in tumors. NMR Biomed 29:1048–1055

    Article  CAS  Google Scholar 

  21. Kazan SM, Reynolds S, Kennerley A et al (2013) Kinetic modeling of hyperpolarized 13C pyruvate metabolism in tumors using a measured arterial input function. Magn Reson Med 70:943–953

    Article  CAS  Google Scholar 

  22. Daniels CJ, McLean MA, Schulte RF et al (2016) A comparison of quantitative methods for clinical imaging with hyperpolarized 13C-pyruvate. NMR Biomed 29:387–399

    Article  CAS  Google Scholar 

  23. Li LZ, Kadlececk S, Xu HN et al (2013) Ratiometric analysis in hyperpolarized NMR (I): test of the two-site exchange model and the quantification of reaction rate constants. NMR Biomed 26:1308–1320

    Article  CAS  Google Scholar 

  24. Hill DK, Orton MR, Mariotti E et al (2013) Model free approach to kinetic analysis of real-time hyperpolarized 13C magnetic resonance spectroscopy data. PLoS One 8:e71996

    Article  CAS  Google Scholar 

  25. Pages G, Kuchel PW (2015) FmRα analysis: rapid and direct estimation of relaxation and kinetic parameters from dynamic nuclear polarization time courses. Magn Reson Med 73:2075–2080

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Academy of Finland grants no. 286895 and no. 314551. The author shares dDNP-related intellectual property with GE Healthcare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikko I. Kettunen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kettunen, M.I. (2019). Hyperpolarized MRI for Studying Tumor Metabolism. In: Haznadar, M. (eds) Cancer Metabolism. Methods in Molecular Biology, vol 1928. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9027-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9027-6_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9026-9

  • Online ISBN: 978-1-4939-9027-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics