Skip to main content

Overview of Characterizing Cancer Glycans with Lectin-Based Analytical Methods

  • Protocol
  • First Online:
Cancer Metabolism

Abstract

Glycosylation is a post-translational modification that is often altered in disease development and progression, including cancer. In cancerous patients, the abnormal expression of glycosylation enzymes leads to aberrant glycosylation, which has been linked to malignant tissues. Due to aberrant glycosylation, the presence of specific glycans can be used as biomarkers for identifying the type and stage of cancer. Glycan structures are heterogeneous, with different protein glycoforms having different functional activities. Lectins are an important tool in glycan analysis due to their specificity in binding to unique glycan linkages and monosaccharide units, which allows for the identification of unique glycan structural properties. In this review, we will discuss the use of lectins in microarrays and chromatography for characterizing glycan structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Moremen KW, Tiemeyer M, Nairn AV (2012) Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol 13(7):448–462. https://doi.org/10.1038/nrm3383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jayaprakash NG, Surolia A (2017) Role of glycosylation in nucleating protein folding and stability. Biochem J 474(14):2333–2347. https://doi.org/10.1042/BCJ20170111

    Article  CAS  PubMed  Google Scholar 

  3. Maverakis E, Kim K, Shimoda M, Gershwin ME, Patel F, Wilken R, Raychaudhuri S, Ruhaak LR, Lebrilla CB (2015) Glycans in the immune system and the altered glycan theory of autoimmunity: a critical review. J Autoimmun 57:1–13. https://doi.org/10.1016/j.jaut.2014.12.002

    Article  CAS  PubMed  Google Scholar 

  4. Taniguchi N, Kizuka Y (2015) Glycans and cancer: role of N-glycans in cancer biomarker, progression and metastasis, and therapeutics. Adv Cancer Res 126:11–51. https://doi.org/10.1016/bs.acr.2014.11.001

    Article  PubMed  Google Scholar 

  5. Freeze HH, Schachter H, Kinoshita T (2015) Genetic disorders of glycosylation. In: Varki A, Cummings RD, Esko JD et al (eds) Essentials of glycobiology, 3rd edn. Cold Spring Harbor, New York. https://doi.org/10.1101/glycobiology.3e.045

    Chapter  Google Scholar 

  6. Varki A, Kornfeld S (2015) Historical Background and Overview. In: Varki A, Cummings RD, Esko JD et al (eds) Essentials of glycobiology, 3rd edn. Cold Spring Harbor, New York. https://doi.org/10.1101/glycobiology.3e.001

    Chapter  Google Scholar 

  7. Kailemia MJ, Park D, Lebrilla CB (2017) Glycans and glycoproteins as specific biomarkers for cancer. Anal Bioanal Chem 409(2):395–410. https://doi.org/10.1007/s00216-016-9880-6

    Article  CAS  PubMed  Google Scholar 

  8. Veillon L, Huang Y, Peng W, Dong X, Cho BG, Mechref Y (2017) Characterization of isomeric glycan structures by LC-MS/MS. Electrophoresis 38(17):2100–2114. https://doi.org/10.1002/elps.201700042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mechref Y (2011) Analysis of glycans derived from glycoconjugates by capillary electrophoresis-mass spectrometry. Electrophoresis 32(24):3467–3481. https://doi.org/10.1002/elps.201100342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Suzuki S (2013) Recent developments in liquid chromatography and capillary electrophoresis for the analysis of glycoprotein glycans. Anal Sci 29(12):1117–1128

    Article  CAS  Google Scholar 

  11. Furukawa J, Fujitani N, Shinohara Y (2013) Recent advances in cellular glycomic analyses. Biomol Ther 3(1):198–225. https://doi.org/10.3390/biom3010198

    Article  CAS  Google Scholar 

  12. Shajahan A, Heiss C, Ishihara M, Azadi P (2017) Glycomic and glycoproteomic analysis of glycoproteins-a tutorial. Anal Bioanal Chem 409(19):4483–4505. https://doi.org/10.1007/s00216-017-0406-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nizet V, Varki A, Aebi M (2015) Microbial lectins: hemagglutinins, adhesins, and toxins. In: Varki A, Cummings RD et al (eds) Essentials of glycobiology. Cold Spring Harbor, New York, pp 481–491. https://doi.org/10.1101/glycobiology.3e.037

    Chapter  Google Scholar 

  14. Lam SK, Ng TB (2011) Lectins: production and practical applications. Appl Microbiol Biotechnol 89(1):45–55. https://doi.org/10.1007/s00253-010-2892-9

    Article  CAS  PubMed  Google Scholar 

  15. Gemeiner P, Mislovicova D, Tkac J, Svitel J, Patoprsty V, Hrabarova E, Kogan G, Kozar T (2009) Lectinomics II. A highway to biomedical/clinical diagnostics. Biotechnol Adv 27(1):1–15. https://doi.org/10.1016/j.biotechadv.2008.07.003

    Article  CAS  PubMed  Google Scholar 

  16. Taylor ME, Drickamer K, Schnaar RL, Etzler ME, Varki A (2015) Discovery and Classification of Glycan-Binding Proteins. In: Varki A, Cummings RD, Esko JD et al (eds) Essentials of glycobiology, 3rd edn. Cold Spring Harbor, NY. https://doi.org/10.1101/glycobiology.3e.028

    Chapter  Google Scholar 

  17. Bicker KL, Sun J, Harrell M, Zhang Y, Pena MM, Thompson PR, Lavigne JJ (2012) Synthetic lectin arrays for the detection and discrimination of cancer associated glycans and cell lines. Chem Sci 3(4):1147–1156. https://doi.org/10.1039/c2sc00790h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zou Y, Broughton DL, Bicker KL, Thompson PR, Lavigne JJ (2007) Peptide borono lectins (PBLs): a new tool for glycomics and cancer diagnostics. Chembiochem 8(17):2048–2051. https://doi.org/10.1002/cbic.200700221

    Article  CAS  PubMed  Google Scholar 

  19. Li M, Lin N, Huang Z, Du L, Altier C, Fang H, Wang B (2008) Selecting aptamers for a glycoprotein through the incorporation of the boronic acid moiety. J Am Chem Soc 130(38):12636–12638. https://doi.org/10.1021/ja801510d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rini J, Esko J, Varki A (2009) Glycosyltransferases and glycan-processing enzymes. In: nd VA, Cummings RD et al (eds) Essentials of Glycobiology. Cold Spring Harbor, NY

    Google Scholar 

  21. Ednie AR, Bennett ES (2012) Modulation of voltage-gated ion channels by sialylation. Compr Physiol 2(2):1269–1301. https://doi.org/10.1002/cphy.c110044

    Article  PubMed  Google Scholar 

  22. Stanley P, Taniguchi N, Aebi M (2015) N-Glycans. In: Varki A, Cummings RD, Esko JD et al (eds) Essentials of glycobiology, 3rd edn. Cold Spring Harbor, NY. https://doi.org/10.1101/glycobiology.3e.009

    Chapter  Google Scholar 

  23. Gill DJ, Clausen H, Bard F (2011) Location, location, location: new insights into O-GalNAc protein glycosylation. Trends Cell Biol 21(3):149–158. https://doi.org/10.1016/j.tcb.2010.11.004

    Article  CAS  PubMed  Google Scholar 

  24. Gabius HJ (2006) Cell surface glycans: the why and how of their functionality as biochemical signals in lectin-mediated information transfer. Crit Rev Immunol 26(1):43–79

    Article  CAS  Google Scholar 

  25. Hoja-Lukowicz D, Przybylo M, Duda M, Pochec E, Bubka M (2017) On the trail of the glycan codes stored in cancer-related cell adhesion proteins. Biochim Biophys Acta 1861(1 Pt A):3237–3257. https://doi.org/10.1016/j.bbagen.2016.08.007

    Article  CAS  Google Scholar 

  26. Rambaruth ND, Dwek MV (2011) Cell surface glycan-lectin interactions in tumor metastasis. Acta Histochem 113(6):591–600. https://doi.org/10.1016/j.acthis.2011.03.001

    Article  CAS  PubMed  Google Scholar 

  27. Gagneux P, Aebi M, Varki A (2015) Evolution of glycan diversity. In: Varki A, Cummings RD, Esko JD et al (eds) Essentials of glycobiology, 3rd edn. Cold Spring Harbor, NY. https://doi.org/10.1101/glycobiology.3e.020

    Chapter  Google Scholar 

  28. Higel F, Seidl A, Sorgel F, Friess W (2016) N-glycosylation heterogeneity and the influence on structure, function and pharmacokinetics of monoclonal antibodies and Fc fusion proteins. Eur J Pharm Biopharm 100:94–100. https://doi.org/10.1016/j.ejpb.2016.01.005

    Article  CAS  PubMed  Google Scholar 

  29. Fuster MM, Esko JD (2005) The sweet and sour of cancer: glycans as novel therapeutic targets. Nat Rev Cancer 5(7):526–542. https://doi.org/10.1038/nrc1649

    Article  CAS  PubMed  Google Scholar 

  30. Pinho SS, Reis CA (2015) Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer 15(9):540–555. https://doi.org/10.1038/nrc3982

    Article  CAS  PubMed  Google Scholar 

  31. Meany DL, Chan DW (2011) Aberrant glycosylation associated with enzymes as cancer biomarkers. Clin Proteomics 8(1):7. https://doi.org/10.1186/1559-0275-8-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Oliveira-Ferrer L, Legler K, Milde-Langosch K (2017) Role of protein glycosylation in cancer metastasis. Semin Cancer Biol 44:141–152. https://doi.org/10.1016/j.semcancer.2017.03.002

    Article  CAS  PubMed  Google Scholar 

  33. Veillon L, Fakih C, Abou-El-Hassan H, Kobeissy F, Mechref Y (2017) Glycosylation changes in brain cancer. ACS Chem Neurosci. https://doi.org/10.1021/acschemneuro.7b00271

    Article  Google Scholar 

  34. Varki A, Kannagi R, Toole BP (2009) Glycosylation changes in cancer. In: Varki A, Cummings RD, Esko JD et al (eds) Essentials of glycobiology, 2nd edn. Cold Spring Harbor, NY

    Google Scholar 

  35. Magnelli P, McClung C Proteomics: fast and efficient antibody deglycosylation using rapid PNGase F. New England Biolabs Inc Glycobiology & Protein Tools (Appl. Note)

    Google Scholar 

  36. Maley F, Trimble RB, Tarentino AL, Plummer TH, Jr. (1989) Characterization of glycoproteins and their associated oligosaccharides through the use of endoglycosidases. Anal Biochem 180 (2):195–204

    Article  CAS  Google Scholar 

  37. Royle L, Mattu TS, Hart E, Langridge JI, Merry AH, Murphy N, Harvey DJ, Dwek RA, Rudd PM (2002) An analytical and structural database provides a strategy for sequencing O-glycans from microgram quantities of glycoproteins. Anal Biochem 304(1):70–90. https://doi.org/10.1006/abio.2002.5619

    Article  CAS  PubMed  Google Scholar 

  38. Kang JG, Ko JH, Kim YS (2016) Application of cancer-associated glycoforms and glycan-binding probes to an in vitro diagnostic multivariate index assay for precise diagnoses of cancer. Proteomics 16(24):3062–3072. https://doi.org/10.1002/pmic.201500553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hollingsworth MA, Swanson BJ (2004) Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer 4(1):45–60. https://doi.org/10.1038/nrc1251

    Article  CAS  PubMed  Google Scholar 

  40. Hirao Y, Matsuzaki H, Iwaki J, Kuno A, Kaji H, Ohkura T, Togayachi A, Abe M, Nomura M, Noguchi M, Ikehara Y, Narimatsu H (2014) Glycoproteomics approach for identifying Glycobiomarker candidate molecules for tissue type classification of non-small cell lung carcinoma. J Proteome Res 13(11):4705–4716. https://doi.org/10.1021/pr5006668

    Article  CAS  PubMed  Google Scholar 

  41. Dube DH, Bertozzi CR (2005) Glycans in cancer and inflammation--potential for therapeutics and diagnostics. Nat Rev Drug Discov 4(6):477–488. https://doi.org/10.1038/nrd1751

    Article  CAS  PubMed  Google Scholar 

  42. Dennis JW, Laferte S, Waghorne C, Breitman ML, Kerbel RS (1987) Beta 1-6 branching of Asn-linked oligosaccharides is directly associated with metastasis. Science 236(4801):582–585

    Article  CAS  Google Scholar 

  43. Abbott KL, Lim JM, Wells L, Benigno BB, McDonald JF, Pierce M (2010) Identification of candidate biomarkers with cancer-specific glycosylation in the tissue and serum of endometrioid ovarian cancer patients by glycoproteomic analysis. Proteomics 10(3):470–481. https://doi.org/10.1002/pmic.200900537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Abbott KL, Nairn AV, Hall EM, Horton MB, McDonald JF, Moremen KW, Dinulescu DM, Pierce M (2008) Focused glycomic analysis of the N-linked glycan biosynthetic pathway in ovarian cancer. Proteomics 8(16):3210–3220. https://doi.org/10.1002/pmic.200800157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang S, Cordon-Cardo C, Zhang HS, Reuter VE, Adluri S, Hamilton WB, Lloyd KO, Livingston PO (1997) Selection of tumor antigens as targets for immune attack using immunohistochemistry: I. Focus on gangliosides. Int J Cancer 73(1):42–49

    Article  CAS  Google Scholar 

  46. Zhang S, Zhang HS, Cordon-Cardo C, Reuter VE, Singhal AK, Lloyd KO, Livingston PO (1997) Selection of tumor antigens as targets for immune attack using immunohistochemistry: II. Blood group-related antigens. Int J Cancer 73(1):50–56

    Article  CAS  Google Scholar 

  47. Toth E, Vekey K, Ozohanics O, Jeko A, Dominczyk I, Widlak P, Drahos L (2016) Changes of protein glycosylation in the course of radiotherapy. J Pharm Biomed Anal 118:380–386. https://doi.org/10.1016/j.jpba.2015.11.010

    Article  CAS  PubMed  Google Scholar 

  48. Heller MJ (2002) DNA microarray technology: devices, systems, and applications. Annu Rev Biomed Eng 4:129–153. https://doi.org/10.1146/annurev.bioeng.4.020702.153438

    Article  CAS  PubMed  Google Scholar 

  49. Hall DA, Ptacek J, Snyder M (2007) Protein microarray technology. Mech Ageing Dev 128(1):161–167. https://doi.org/10.1016/j.mad.2006.11.021

    Article  CAS  PubMed  Google Scholar 

  50. Cretich M, Damin F, Chiari M (2014) Protein microarray technology: how far off is routine diagnostics? Analyst 139(3):528–542. https://doi.org/10.1039/c3an01619f

    Article  CAS  PubMed  Google Scholar 

  51. Angeloni S, Ridet JL, Kusy N, Gao H, Crevoisier F, Guinchard S, Kochhar S, Sigrist H, Sprenger N (2005) Glycoprofiling with micro-arrays of glycoconjugates and lectins. Glycobiology 15(1):31–41. https://doi.org/10.1093/glycob/cwh143

    Article  CAS  PubMed  Google Scholar 

  52. Pilobello KT, Krishnamoorthy L, Slawek D, Mahal LK (2005) Development of a lectin microarray for the rapid analysis of protein glycopatterns. Chembiochem 6(6):985–989. https://doi.org/10.1002/cbic.200400403

    Article  CAS  PubMed  Google Scholar 

  53. Kuno A, Uchiyama N, Koseki-Kuno S, Ebe Y, Takashima S, Yamada M, Hirabayashi J (2005) Evanescent-field fluorescence-assisted lectin microarray: a new strategy for glycan profiling. Nat Methods 2(11):851–856. https://doi.org/10.1038/nmeth803

    Article  CAS  PubMed  Google Scholar 

  54. Chen S, Zheng T, Shortreed MR, Alexander C, Smith LM (2007) Analysis of cell surface carbohydrate expression patterns in normal and tumorigenic human breast cell lines using lectin arrays. Anal Chem 79(15):5698–5702. https://doi.org/10.1021/ac070423k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Li Y, Tao SC, Bova GS, Liu AY, Chan DW, Zhu H, Zhang H (2011) Detection and verification of glycosylation patterns of glycoproteins from clinical specimens using lectin microarrays and lectin-based immunosorbent assays. Anal Chem 83(22):8509–8516. https://doi.org/10.1021/ac201452f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Landemarre L, Cancellieri P, Duverger E (2013) Cell surface lectin array: parameters affecting cell glycan signature. Glycoconj J 30(3):195–203. https://doi.org/10.1007/s10719-012-9433-y

    Article  CAS  PubMed  Google Scholar 

  57. Chen P, Liu Y, Kang X, Sun L, Yang P, Tang Z (2008) Identification of N-glycan of alpha-fetoprotein by lectin affinity microarray. J Cancer Res Clin Oncol 134(8):851–860. https://doi.org/10.1007/s00432-008-0357-7

    Article  CAS  PubMed  Google Scholar 

  58. Tao SC, Li Y, Zhou J, Qian J, Schnaar RL, Zhang Y, Goldstein IJ, Zhu H, Schneck JP (2008) Lectin microarrays identify cell-specific and functionally significant cell surface glycan markers. Glycobiology 18(10):761–769. https://doi.org/10.1093/glycob/cwn063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Microarrayers NanoPrint. (2017) Arrayit Corporation. http://www.arrayit.com/Products/Microarrayers/Microarray_Printer/microarray_printer.html. Accessed November 2017

  60. Fry SA, Afrough B, Lomax-Browne HJ, Timms JF, Velentzis LS, Leathem AJ (2011) Lectin microarray profiling of metastatic breast cancers. Glycobiology 21(8):1060–1070. https://doi.org/10.1093/glycob/cwr045

    Article  CAS  PubMed  Google Scholar 

  61. Leymarie N, Zaia J (2012) Effective use of mass spectrometry for glycan and glycopeptide structural analysis. Anal Chem 84(7):3040–3048. https://doi.org/10.1021/ac3000573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ghazarian H, Idoni B, Oppenheimer SB (2011) A glycobiology review: carbohydrates, lectins and implications in cancer therapeutics. Acta Histochem 113(3):236–247. https://doi.org/10.1016/j.acthis.2010.02.004

    Article  CAS  PubMed  Google Scholar 

  63. Ambrosi M, Cameron NR, Davis BG (2005) Lectins: tools for the molecular understanding of the glycocode. Org Biomol Chem 3(9):1593–1608. https://doi.org/10.1039/b414350g

    Article  CAS  PubMed  Google Scholar 

  64. Davis AP (2009) Synthetic lectins. Org Biomol Chem 7(18):3629–3638. https://doi.org/10.1039/b909856a

    Article  CAS  PubMed  Google Scholar 

  65. Houston TA (2010) Developing high-affinity boron-based receptors for cell-surface carbohydrates. Chembiochem 11(7):954–957. https://doi.org/10.1002/cbic.201000079

    Article  CAS  PubMed  Google Scholar 

  66. Brighid Pappin MJK, Houston TA (2012) Boron-carbohydrate interactions. Comp Stud Glycobiol Glycotechnol. Doi:https://doi.org/10.5772/50630

    Google Scholar 

  67. Arnaud J, Audfray A, Imberty A (2013) Binding sugars: from natural lectins to synthetic receptors and engineered neolectins. Chem Soc Rev 42(11):4798–4813. https://doi.org/10.1039/c2cs35435g

    Article  CAS  PubMed  Google Scholar 

  68. Sun X, Zhai W, Fossey JS, James TD (2016) Boronic acids for fluorescence imaging of carbohydrates. Chem Commun (Camb) 52(17):3456–3469. https://doi.org/10.1039/c5cc08633g

    Article  CAS  Google Scholar 

  69. Li S, Mo C, Peng Q, Kang X, Sun C, Jiang K, Huang L, Lu Y, Sui J, Qin X, Liu Y (2013) Cell surface glycan alterations in epithelial mesenchymal transition process of Huh7 hepatocellular carcinoma cell. PLoS One 8(8):e71273. https://doi.org/10.1371/journal.pone.0071273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ito H, Kuno A, Sawaki H, Sogabe M, Ozaki H, Tanaka Y, Mizokami M, Shoda J, Angata T, Sato T, Hirabayashi J, Ikehara Y, Narimatsu H (2009) Strategy for glycoproteomics: identification of glyco-alteration using multiple glycan profiling tools. J Proteome Res 8(3):1358–1367. https://doi.org/10.1021/pr800735j

    Article  CAS  PubMed  Google Scholar 

  71. Sun Y, Cheng L, Gu Y, Xin A, Wu B, Zhou S, Guo S, Liu Y, Diao H, Shi H, Wang G, Tao SC (2016) A Human Lectin Microarray for Sperm Surface Glycosylation Analysis. Mol Cell Proteomics 15(9):2839–2851. https://doi.org/10.1074/mcp.M116.059311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ruhaak LR, Zauner G, Huhn C, Bruggink C, Deelder AM, Wuhrer M (2010) Glycan labeling strategies and their use in identification and quantification. Anal Bioanal Chem 397(8):3457–3481. https://doi.org/10.1007/s00216-010-3532-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Korekane H, Shida K, Murata K, Ohue M, Sasaki Y, Imaoka S, Miyamoto Y (2007) Evaluation of laser microdissection as a tool in cancer glycomic studies. Biochem Biophys Res Commun 352(3):579–586. https://doi.org/10.1016/j.bbrc.2006.10.191

    Article  CAS  PubMed  Google Scholar 

  74. Murray GI (2007) An overview of laser microdissection technologies. Acta Histochem 109(3):171–176. https://doi.org/10.1016/j.acthis.2007.02.001

    Article  PubMed  Google Scholar 

  75. Sturm D, Marselli L, Ehehalt F, Richter D, Distler M, Kersting S, Grutzmann R, Bokvist K, Froguel P, Liechti R, Jorns A, Meda P, Baretton GB, Saeger HD, Schulte AM, Marchetti P, Solimena M (2013) Improved protocol for laser microdissection of human pancreatic islets from surgical specimens. J Vis Exp (71). doi:https://doi.org/10.3791/50231

  76. Espina V, Wulfkuhle JD, Calvert VS, VanMeter A, Zhou W, Coukos G, Geho DH, Petricoin EF 3rd, Liotta LA (2006) Laser-capture microdissection. Nat Protoc 1(2):586–603. https://doi.org/10.1038/nprot.2006.85

    Article  CAS  PubMed  Google Scholar 

  77. Kuno A, Matsuda A, Ikehara Y, Narimatsu H, Hirabayashi J (2010) Differential glycan profiling by lectin microarray targeting tissue specimens. Methods Enzymol 478:165–179. https://doi.org/10.1016/S0076-6879

    Article  CAS  PubMed  Google Scholar 

  78. Koshi Y, Nakata E, Yamane H, Hamachi I (2006) A fluorescent lectin array using supramolecular hydrogel for simple detection and pattern profiling for various glycoconjugates. J Am Chem Soc 128(32):10413–10422. https://doi.org/10.1021/ja0613963

    Article  CAS  PubMed  Google Scholar 

  79. Lehr HP, Reimann M, Brandenburg A, Sulz G, Klapproth H (2003) Real-time detection of nucleic acid interactions by total internal reflection fluorescence. Anal Chem 75(10):2414–2420

    Article  CAS  Google Scholar 

  80. Uchiyama N, Kuno A, Koseki-Kuno S, Ebe Y, Horio K, Yamada M, Hirabayashi J (2006) Development of a lectin microarray based on an evanescent-field fluorescence principle. Methods Enzymol 415:341–351. https://doi.org/10.1016/S0076-6879(06)15021-1

    Article  CAS  PubMed  Google Scholar 

  81. Uchiyama N, Kuno A, Tateno H, Kubo Y, Mizuno M, Noguchi M, Hirabayashi J (2008) Optimization of evanescent-field fluorescence-assisted lectin microarray for high-sensitivity detection of monovalent oligosaccharides and glycoproteins. Proteomics 8(15):3042–3050. https://doi.org/10.1002/pmic.200701114

    Article  CAS  PubMed  Google Scholar 

  82. Zhao R, Liu X, Wang Y, Jie X, Qin R, Qin W, Zhang M, Tai H, Yang C, Li L, Peng P, Shao M, Zhang X, Wu H, Ruan Y, Xu C, Ren S, Gu J (2016) Integrated glycomic analysis of ovarian cancer side population cells. Clin Proteomics 13:32. https://doi.org/10.1186/s12014-016-9131-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Matsuda A, Kuno A, Ishida H, Kawamoto T, Shoda J, Hirabayashi J (2008) Development of an all-in-one technology for glycan profiling targeting formalin-embedded tissue sections. Biochem Biophys Res Commun 370(2):259–263. https://doi.org/10.1016/j.bbrc.2008.03.090

    Article  CAS  PubMed  Google Scholar 

  84. Tateno H, Uchiyama N, Kuno A, Togayachi A, Sato T, Narimatsu H, Hirabayashi J (2007) A novel strategy for mammalian cell surface glycome profiling using lectin microarray. Glycobiology 17(10):1138–1146. https://doi.org/10.1093/glycob/cwm084

    Article  CAS  PubMed  Google Scholar 

  85. Ltd. G (2016) GlycoTechnia Ltd. http://www.glycotechnica.com/english/products.htm. Accessed Oct 2017

  86. Zheng T, Peelen D, Smith LM (2005) Lectin arrays for profiling cell surface carbohydrate expression. J Am Chem Soc 127(28):9982–9983. https://doi.org/10.1021/ja0505550

    Article  CAS  PubMed  Google Scholar 

  87. Pilobello KT, Slawek DE, Mahal LK (2007) A ratiometric lectin microarray approach to analysis of the dynamic mammalian glycome. Proc Natl Acad Sci U S A 104(28):11534–11539. https://doi.org/10.1073/pnas.0704954104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Pilobello KT, Agrawal P, Rouse R, Mahal LK (2013) Advances in lectin microarray technology: optimized protocols for piezoelectric print conditions. Curr Protoc Chem Biol 5(1):1–23. https://doi.org/10.1002/9780470559277.ch120035

    Article  PubMed  PubMed Central  Google Scholar 

  89. Fromell K, Andersson M, Elihn K, Caldwell KD (2005) Nanoparticle decorated surfaces with potential use in glycosylation analysis. Colloids Surf B Biointerfaces 46(2):84–91. https://doi.org/10.1016/j.colsurfb.2005.06.017

    Article  CAS  PubMed  Google Scholar 

  90. Burtis CA, Ashwood ER, Tietz NW (1999) Tietz textbook of clinical chemistry, 3rd edn. W.B. Saunders, New York

    Google Scholar 

  91. MSaM B (2015) Glycosylation in cell culture. In: Al-Rubeai M (ed) Animal cell culture. Springer, NY, pp 237–258

    Google Scholar 

  92. Patnaik SK, Stanley P (2006) Lectin-resistant CHO glycosylation mutants. Methods Enzymol 416:159–182. https://doi.org/10.1016/S0076-6879(06)16011-5

    Article  CAS  PubMed  Google Scholar 

  93. North SJ, Huang HH, Sundaram S, Jang-Lee J, Etienne AT, Trollope A, Chalabi S, Dell A, Stanley P, Haslam SM (2010) Glycomics profiling of Chinese hamster ovary cell glycosylation mutants reveals N-glycans of a novel size and complexity. J Biol Chem 285(8):5759–5775. https://doi.org/10.1074/jbc.M109.068353

    Article  CAS  PubMed  Google Scholar 

  94. Cavazzini A, Pasti L, Massi A, Marchetti N, Dondi F (2011) Recent applications in chiral high performance liquid chromatography: a review. Anal Chim Acta 706(2):205–222. https://doi.org/10.1016/j.aca.2011.08.038

    Article  CAS  PubMed  Google Scholar 

  95. Cheung RC, Wong JH, Ng TB (2012) Immobilized metal ion affinity chromatography: a review on its applications. Appl Microbiol Biotechnol 96(6):1411–1420. https://doi.org/10.1007/s00253-012-4507-0

    Article  CAS  PubMed  Google Scholar 

  96. Hibbert DB (2012) Experimental design in chromatography: a tutorial review. J Chromatogr B Analyt Technol Biomed Life Sci 910:2–13. https://doi.org/10.1016/j.jchromb.2012.01.020

    Article  CAS  PubMed  Google Scholar 

  97. Pfaunmiller EL, Paulemond ML, Dupper CM, Hage DS (2013) Affinity monolith chromatography: a review of principles and recent analytical applications. Anal Bioanal Chem 405(7):2133–2145. https://doi.org/10.1007/s00216-012-6568-4

    Article  CAS  PubMed  Google Scholar 

  98. Yamashita K, Ohkura T (2014) Determination of glycan motifs using serial lectin affinity chromatography. Methods Mol Biol 1200:79–92. https://doi.org/10.1007/978-1-4939-1292-6_7

    Article  CAS  PubMed  Google Scholar 

  99. Tateno H, Nakamura-Tsuruta S, Hirabayashi J (2007) Frontal affinity chromatography: sugar-protein interactions. Nat Protoc 2(10):2529–2537. https://doi.org/10.1038/nprot.2007.357

    Article  CAS  PubMed  Google Scholar 

  100. Zeng Z, Hincapie M, Pitteri SJ, Hanash S, Schalkwijk J, Hogan JM, Wang H, Hancock WS (2011) A proteomics platform combining depletion, multi-lectin affinity chromatography (M-LAC), and isoelectric focusing to study the breast cancer proteome. Anal Chem 83(12):4845–4854. https://doi.org/10.1021/ac2002802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Jung K, Cho W, Regnier FE (2009) Glycoproteomics of plasma based on narrow selectivity lectin affinity chromatography. J Proteome Res 8(2):643–650. https://doi.org/10.1021/pr8007495

    Article  CAS  PubMed  Google Scholar 

  102. Song E, Zhu R, Hammoud ZT, Mechref Y (2014) LC-MS/MS quantitation of esophagus disease blood serum glycoproteins by enrichment with hydrazide chemistry and lectin affinity chromatography. J Proteome Res 13(11):4808–4820. https://doi.org/10.1021/pr500570m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Drake PM, Schilling B, Niles RK, Prakobphol A, Li B, Jung K, Cho W, Braten M, Inerowicz HD, Williams K, Albertolle M, Held JM, Iacovides D, Sorensen DJ, Griffith OL, Johansen E, Zawadzka AM, Cusack MP, Allen S, Gormley M, Hall SC, Witkowska HE, Gray JW, Regnier F, Gibson BW, Fisher SJ (2012) Lectin chromatography/mass spectrometry discovery workflow identifies putative biomarkers of aggressive breast cancers. J Proteome Res 11(4):2508–2520. https://doi.org/10.1021/pr201206w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Cummings RD, Kornfeld S (1982) Fractionation of asparagine-linked oligosaccharides by serial lectin-Agarose affinity chromatography. A rapid, sensitive, and specific technique. J Biol Chem 257(19):11235–11240

    CAS  PubMed  Google Scholar 

  105. Lehoux S, Ju T (2017) Separation of two distinct O-glycoforms of human IgA1 by serial lectin chromatography followed by mass spectrometry O-glycan analysis. Methods Enzymol 585:61–75. https://doi.org/10.1016/bs.mie.2016.10.003

    Article  CAS  PubMed  Google Scholar 

  106. Kasai K, Oda Y, Nishikata M, Ishii S (1986) Frontal affinity chromatography: theory for its application to studies on specific interactions of biomolecules. J Chromatogr 376:33–47

    Article  CAS  Google Scholar 

  107. Kasai K (2014) Frontal affinity chromatography: a unique research tool for biospecific interaction that promotes glycobiology. Proc Jpn Acad Ser B Phys Biol Sci 90(7):215–234

    Article  CAS  Google Scholar 

  108. Nakamura-Tsuruta S, Uchiyama N, Hirabayashi J (2006) High-throughput analysis of lectin-oligosaccharide interactions by automated frontal affinity chromatography. Methods Enzymol 415:311–325. https://doi.org/10.1016/S0076-6879(06)15019-3

    Article  CAS  PubMed  Google Scholar 

  109. Hirabayashi J, Arata Y, Kasai K (2003) Frontal affinity chromatography as a tool for elucidation of sugar recognition properties of lectins. Methods Enzymol 362:353–368

    Article  CAS  Google Scholar 

  110. Arata Y, Hirabayashi J, Kasai KI (2001) Application of reinforced frontal affinity chromatography and advanced processing procedure to the study of the binding property of a Caenorhabditis elegans galectin. J Chromatogr A 905(1–2):337–343

    Article  CAS  Google Scholar 

  111. Hirabayashi J, Hashidate T, Arata Y, Nishi N, Nakamura T, Hirashima M, Urashima T, Oka T, Futai M, Muller WE, Yagi F, Kasai K (2002) Oligosaccharide specificity of galectins: a search by frontal affinity chromatography. Biochim Biophys Acta 1572(2–3):232–254

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elyssia S. Gallagher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pearson, A.J., Gallagher, E.S. (2019). Overview of Characterizing Cancer Glycans with Lectin-Based Analytical Methods. In: Haznadar, M. (eds) Cancer Metabolism. Methods in Molecular Biology, vol 1928. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9027-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9027-6_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9026-9

  • Online ISBN: 978-1-4939-9027-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics