Abstract
Glycosylation is a post-translational modification that is often altered in disease development and progression, including cancer. In cancerous patients, the abnormal expression of glycosylation enzymes leads to aberrant glycosylation, which has been linked to malignant tissues. Due to aberrant glycosylation, the presence of specific glycans can be used as biomarkers for identifying the type and stage of cancer. Glycan structures are heterogeneous, with different protein glycoforms having different functional activities. Lectins are an important tool in glycan analysis due to their specificity in binding to unique glycan linkages and monosaccharide units, which allows for the identification of unique glycan structural properties. In this review, we will discuss the use of lectins in microarrays and chromatography for characterizing glycan structures.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Moremen KW, Tiemeyer M, Nairn AV (2012) Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol 13(7):448–462. https://doi.org/10.1038/nrm3383
Jayaprakash NG, Surolia A (2017) Role of glycosylation in nucleating protein folding and stability. Biochem J 474(14):2333–2347. https://doi.org/10.1042/BCJ20170111
Maverakis E, Kim K, Shimoda M, Gershwin ME, Patel F, Wilken R, Raychaudhuri S, Ruhaak LR, Lebrilla CB (2015) Glycans in the immune system and the altered glycan theory of autoimmunity: a critical review. J Autoimmun 57:1–13. https://doi.org/10.1016/j.jaut.2014.12.002
Taniguchi N, Kizuka Y (2015) Glycans and cancer: role of N-glycans in cancer biomarker, progression and metastasis, and therapeutics. Adv Cancer Res 126:11–51. https://doi.org/10.1016/bs.acr.2014.11.001
Freeze HH, Schachter H, Kinoshita T (2015) Genetic disorders of glycosylation. In: Varki A, Cummings RD, Esko JD et al (eds) Essentials of glycobiology, 3rd edn. Cold Spring Harbor, New York. https://doi.org/10.1101/glycobiology.3e.045
Varki A, Kornfeld S (2015) Historical Background and Overview. In: Varki A, Cummings RD, Esko JD et al (eds) Essentials of glycobiology, 3rd edn. Cold Spring Harbor, New York. https://doi.org/10.1101/glycobiology.3e.001
Kailemia MJ, Park D, Lebrilla CB (2017) Glycans and glycoproteins as specific biomarkers for cancer. Anal Bioanal Chem 409(2):395–410. https://doi.org/10.1007/s00216-016-9880-6
Veillon L, Huang Y, Peng W, Dong X, Cho BG, Mechref Y (2017) Characterization of isomeric glycan structures by LC-MS/MS. Electrophoresis 38(17):2100–2114. https://doi.org/10.1002/elps.201700042
Mechref Y (2011) Analysis of glycans derived from glycoconjugates by capillary electrophoresis-mass spectrometry. Electrophoresis 32(24):3467–3481. https://doi.org/10.1002/elps.201100342
Suzuki S (2013) Recent developments in liquid chromatography and capillary electrophoresis for the analysis of glycoprotein glycans. Anal Sci 29(12):1117–1128
Furukawa J, Fujitani N, Shinohara Y (2013) Recent advances in cellular glycomic analyses. Biomol Ther 3(1):198–225. https://doi.org/10.3390/biom3010198
Shajahan A, Heiss C, Ishihara M, Azadi P (2017) Glycomic and glycoproteomic analysis of glycoproteins-a tutorial. Anal Bioanal Chem 409(19):4483–4505. https://doi.org/10.1007/s00216-017-0406-7
Nizet V, Varki A, Aebi M (2015) Microbial lectins: hemagglutinins, adhesins, and toxins. In: Varki A, Cummings RD et al (eds) Essentials of glycobiology. Cold Spring Harbor, New York, pp 481–491. https://doi.org/10.1101/glycobiology.3e.037
Lam SK, Ng TB (2011) Lectins: production and practical applications. Appl Microbiol Biotechnol 89(1):45–55. https://doi.org/10.1007/s00253-010-2892-9
Gemeiner P, Mislovicova D, Tkac J, Svitel J, Patoprsty V, Hrabarova E, Kogan G, Kozar T (2009) Lectinomics II. A highway to biomedical/clinical diagnostics. Biotechnol Adv 27(1):1–15. https://doi.org/10.1016/j.biotechadv.2008.07.003
Taylor ME, Drickamer K, Schnaar RL, Etzler ME, Varki A (2015) Discovery and Classification of Glycan-Binding Proteins. In: Varki A, Cummings RD, Esko JD et al (eds) Essentials of glycobiology, 3rd edn. Cold Spring Harbor, NY. https://doi.org/10.1101/glycobiology.3e.028
Bicker KL, Sun J, Harrell M, Zhang Y, Pena MM, Thompson PR, Lavigne JJ (2012) Synthetic lectin arrays for the detection and discrimination of cancer associated glycans and cell lines. Chem Sci 3(4):1147–1156. https://doi.org/10.1039/c2sc00790h
Zou Y, Broughton DL, Bicker KL, Thompson PR, Lavigne JJ (2007) Peptide borono lectins (PBLs): a new tool for glycomics and cancer diagnostics. Chembiochem 8(17):2048–2051. https://doi.org/10.1002/cbic.200700221
Li M, Lin N, Huang Z, Du L, Altier C, Fang H, Wang B (2008) Selecting aptamers for a glycoprotein through the incorporation of the boronic acid moiety. J Am Chem Soc 130(38):12636–12638. https://doi.org/10.1021/ja801510d
Rini J, Esko J, Varki A (2009) Glycosyltransferases and glycan-processing enzymes. In: nd VA, Cummings RD et al (eds) Essentials of Glycobiology. Cold Spring Harbor, NY
Ednie AR, Bennett ES (2012) Modulation of voltage-gated ion channels by sialylation. Compr Physiol 2(2):1269–1301. https://doi.org/10.1002/cphy.c110044
Stanley P, Taniguchi N, Aebi M (2015) N-Glycans. In: Varki A, Cummings RD, Esko JD et al (eds) Essentials of glycobiology, 3rd edn. Cold Spring Harbor, NY. https://doi.org/10.1101/glycobiology.3e.009
Gill DJ, Clausen H, Bard F (2011) Location, location, location: new insights into O-GalNAc protein glycosylation. Trends Cell Biol 21(3):149–158. https://doi.org/10.1016/j.tcb.2010.11.004
Gabius HJ (2006) Cell surface glycans: the why and how of their functionality as biochemical signals in lectin-mediated information transfer. Crit Rev Immunol 26(1):43–79
Hoja-Lukowicz D, Przybylo M, Duda M, Pochec E, Bubka M (2017) On the trail of the glycan codes stored in cancer-related cell adhesion proteins. Biochim Biophys Acta 1861(1 Pt A):3237–3257. https://doi.org/10.1016/j.bbagen.2016.08.007
Rambaruth ND, Dwek MV (2011) Cell surface glycan-lectin interactions in tumor metastasis. Acta Histochem 113(6):591–600. https://doi.org/10.1016/j.acthis.2011.03.001
Gagneux P, Aebi M, Varki A (2015) Evolution of glycan diversity. In: Varki A, Cummings RD, Esko JD et al (eds) Essentials of glycobiology, 3rd edn. Cold Spring Harbor, NY. https://doi.org/10.1101/glycobiology.3e.020
Higel F, Seidl A, Sorgel F, Friess W (2016) N-glycosylation heterogeneity and the influence on structure, function and pharmacokinetics of monoclonal antibodies and Fc fusion proteins. Eur J Pharm Biopharm 100:94–100. https://doi.org/10.1016/j.ejpb.2016.01.005
Fuster MM, Esko JD (2005) The sweet and sour of cancer: glycans as novel therapeutic targets. Nat Rev Cancer 5(7):526–542. https://doi.org/10.1038/nrc1649
Pinho SS, Reis CA (2015) Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer 15(9):540–555. https://doi.org/10.1038/nrc3982
Meany DL, Chan DW (2011) Aberrant glycosylation associated with enzymes as cancer biomarkers. Clin Proteomics 8(1):7. https://doi.org/10.1186/1559-0275-8-7
Oliveira-Ferrer L, Legler K, Milde-Langosch K (2017) Role of protein glycosylation in cancer metastasis. Semin Cancer Biol 44:141–152. https://doi.org/10.1016/j.semcancer.2017.03.002
Veillon L, Fakih C, Abou-El-Hassan H, Kobeissy F, Mechref Y (2017) Glycosylation changes in brain cancer. ACS Chem Neurosci. https://doi.org/10.1021/acschemneuro.7b00271
Varki A, Kannagi R, Toole BP (2009) Glycosylation changes in cancer. In: Varki A, Cummings RD, Esko JD et al (eds) Essentials of glycobiology, 2nd edn. Cold Spring Harbor, NY
Magnelli P, McClung C Proteomics: fast and efficient antibody deglycosylation using rapid PNGase F. New England Biolabs Inc Glycobiology & Protein Tools (Appl. Note)
Maley F, Trimble RB, Tarentino AL, Plummer TH, Jr. (1989) Characterization of glycoproteins and their associated oligosaccharides through the use of endoglycosidases. Anal Biochem 180 (2):195–204
Royle L, Mattu TS, Hart E, Langridge JI, Merry AH, Murphy N, Harvey DJ, Dwek RA, Rudd PM (2002) An analytical and structural database provides a strategy for sequencing O-glycans from microgram quantities of glycoproteins. Anal Biochem 304(1):70–90. https://doi.org/10.1006/abio.2002.5619
Kang JG, Ko JH, Kim YS (2016) Application of cancer-associated glycoforms and glycan-binding probes to an in vitro diagnostic multivariate index assay for precise diagnoses of cancer. Proteomics 16(24):3062–3072. https://doi.org/10.1002/pmic.201500553
Hollingsworth MA, Swanson BJ (2004) Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer 4(1):45–60. https://doi.org/10.1038/nrc1251
Hirao Y, Matsuzaki H, Iwaki J, Kuno A, Kaji H, Ohkura T, Togayachi A, Abe M, Nomura M, Noguchi M, Ikehara Y, Narimatsu H (2014) Glycoproteomics approach for identifying Glycobiomarker candidate molecules for tissue type classification of non-small cell lung carcinoma. J Proteome Res 13(11):4705–4716. https://doi.org/10.1021/pr5006668
Dube DH, Bertozzi CR (2005) Glycans in cancer and inflammation--potential for therapeutics and diagnostics. Nat Rev Drug Discov 4(6):477–488. https://doi.org/10.1038/nrd1751
Dennis JW, Laferte S, Waghorne C, Breitman ML, Kerbel RS (1987) Beta 1-6 branching of Asn-linked oligosaccharides is directly associated with metastasis. Science 236(4801):582–585
Abbott KL, Lim JM, Wells L, Benigno BB, McDonald JF, Pierce M (2010) Identification of candidate biomarkers with cancer-specific glycosylation in the tissue and serum of endometrioid ovarian cancer patients by glycoproteomic analysis. Proteomics 10(3):470–481. https://doi.org/10.1002/pmic.200900537
Abbott KL, Nairn AV, Hall EM, Horton MB, McDonald JF, Moremen KW, Dinulescu DM, Pierce M (2008) Focused glycomic analysis of the N-linked glycan biosynthetic pathway in ovarian cancer. Proteomics 8(16):3210–3220. https://doi.org/10.1002/pmic.200800157
Zhang S, Cordon-Cardo C, Zhang HS, Reuter VE, Adluri S, Hamilton WB, Lloyd KO, Livingston PO (1997) Selection of tumor antigens as targets for immune attack using immunohistochemistry: I. Focus on gangliosides. Int J Cancer 73(1):42–49
Zhang S, Zhang HS, Cordon-Cardo C, Reuter VE, Singhal AK, Lloyd KO, Livingston PO (1997) Selection of tumor antigens as targets for immune attack using immunohistochemistry: II. Blood group-related antigens. Int J Cancer 73(1):50–56
Toth E, Vekey K, Ozohanics O, Jeko A, Dominczyk I, Widlak P, Drahos L (2016) Changes of protein glycosylation in the course of radiotherapy. J Pharm Biomed Anal 118:380–386. https://doi.org/10.1016/j.jpba.2015.11.010
Heller MJ (2002) DNA microarray technology: devices, systems, and applications. Annu Rev Biomed Eng 4:129–153. https://doi.org/10.1146/annurev.bioeng.4.020702.153438
Hall DA, Ptacek J, Snyder M (2007) Protein microarray technology. Mech Ageing Dev 128(1):161–167. https://doi.org/10.1016/j.mad.2006.11.021
Cretich M, Damin F, Chiari M (2014) Protein microarray technology: how far off is routine diagnostics? Analyst 139(3):528–542. https://doi.org/10.1039/c3an01619f
Angeloni S, Ridet JL, Kusy N, Gao H, Crevoisier F, Guinchard S, Kochhar S, Sigrist H, Sprenger N (2005) Glycoprofiling with micro-arrays of glycoconjugates and lectins. Glycobiology 15(1):31–41. https://doi.org/10.1093/glycob/cwh143
Pilobello KT, Krishnamoorthy L, Slawek D, Mahal LK (2005) Development of a lectin microarray for the rapid analysis of protein glycopatterns. Chembiochem 6(6):985–989. https://doi.org/10.1002/cbic.200400403
Kuno A, Uchiyama N, Koseki-Kuno S, Ebe Y, Takashima S, Yamada M, Hirabayashi J (2005) Evanescent-field fluorescence-assisted lectin microarray: a new strategy for glycan profiling. Nat Methods 2(11):851–856. https://doi.org/10.1038/nmeth803
Chen S, Zheng T, Shortreed MR, Alexander C, Smith LM (2007) Analysis of cell surface carbohydrate expression patterns in normal and tumorigenic human breast cell lines using lectin arrays. Anal Chem 79(15):5698–5702. https://doi.org/10.1021/ac070423k
Li Y, Tao SC, Bova GS, Liu AY, Chan DW, Zhu H, Zhang H (2011) Detection and verification of glycosylation patterns of glycoproteins from clinical specimens using lectin microarrays and lectin-based immunosorbent assays. Anal Chem 83(22):8509–8516. https://doi.org/10.1021/ac201452f
Landemarre L, Cancellieri P, Duverger E (2013) Cell surface lectin array: parameters affecting cell glycan signature. Glycoconj J 30(3):195–203. https://doi.org/10.1007/s10719-012-9433-y
Chen P, Liu Y, Kang X, Sun L, Yang P, Tang Z (2008) Identification of N-glycan of alpha-fetoprotein by lectin affinity microarray. J Cancer Res Clin Oncol 134(8):851–860. https://doi.org/10.1007/s00432-008-0357-7
Tao SC, Li Y, Zhou J, Qian J, Schnaar RL, Zhang Y, Goldstein IJ, Zhu H, Schneck JP (2008) Lectin microarrays identify cell-specific and functionally significant cell surface glycan markers. Glycobiology 18(10):761–769. https://doi.org/10.1093/glycob/cwn063
Microarrayers NanoPrint. (2017) Arrayit Corporation. http://www.arrayit.com/Products/Microarrayers/Microarray_Printer/microarray_printer.html. Accessed November 2017
Fry SA, Afrough B, Lomax-Browne HJ, Timms JF, Velentzis LS, Leathem AJ (2011) Lectin microarray profiling of metastatic breast cancers. Glycobiology 21(8):1060–1070. https://doi.org/10.1093/glycob/cwr045
Leymarie N, Zaia J (2012) Effective use of mass spectrometry for glycan and glycopeptide structural analysis. Anal Chem 84(7):3040–3048. https://doi.org/10.1021/ac3000573
Ghazarian H, Idoni B, Oppenheimer SB (2011) A glycobiology review: carbohydrates, lectins and implications in cancer therapeutics. Acta Histochem 113(3):236–247. https://doi.org/10.1016/j.acthis.2010.02.004
Ambrosi M, Cameron NR, Davis BG (2005) Lectins: tools for the molecular understanding of the glycocode. Org Biomol Chem 3(9):1593–1608. https://doi.org/10.1039/b414350g
Davis AP (2009) Synthetic lectins. Org Biomol Chem 7(18):3629–3638. https://doi.org/10.1039/b909856a
Houston TA (2010) Developing high-affinity boron-based receptors for cell-surface carbohydrates. Chembiochem 11(7):954–957. https://doi.org/10.1002/cbic.201000079
Brighid Pappin MJK, Houston TA (2012) Boron-carbohydrate interactions. Comp Stud Glycobiol Glycotechnol. Doi:https://doi.org/10.5772/50630
Arnaud J, Audfray A, Imberty A (2013) Binding sugars: from natural lectins to synthetic receptors and engineered neolectins. Chem Soc Rev 42(11):4798–4813. https://doi.org/10.1039/c2cs35435g
Sun X, Zhai W, Fossey JS, James TD (2016) Boronic acids for fluorescence imaging of carbohydrates. Chem Commun (Camb) 52(17):3456–3469. https://doi.org/10.1039/c5cc08633g
Li S, Mo C, Peng Q, Kang X, Sun C, Jiang K, Huang L, Lu Y, Sui J, Qin X, Liu Y (2013) Cell surface glycan alterations in epithelial mesenchymal transition process of Huh7 hepatocellular carcinoma cell. PLoS One 8(8):e71273. https://doi.org/10.1371/journal.pone.0071273
Ito H, Kuno A, Sawaki H, Sogabe M, Ozaki H, Tanaka Y, Mizokami M, Shoda J, Angata T, Sato T, Hirabayashi J, Ikehara Y, Narimatsu H (2009) Strategy for glycoproteomics: identification of glyco-alteration using multiple glycan profiling tools. J Proteome Res 8(3):1358–1367. https://doi.org/10.1021/pr800735j
Sun Y, Cheng L, Gu Y, Xin A, Wu B, Zhou S, Guo S, Liu Y, Diao H, Shi H, Wang G, Tao SC (2016) A Human Lectin Microarray for Sperm Surface Glycosylation Analysis. Mol Cell Proteomics 15(9):2839–2851. https://doi.org/10.1074/mcp.M116.059311
Ruhaak LR, Zauner G, Huhn C, Bruggink C, Deelder AM, Wuhrer M (2010) Glycan labeling strategies and their use in identification and quantification. Anal Bioanal Chem 397(8):3457–3481. https://doi.org/10.1007/s00216-010-3532-z
Korekane H, Shida K, Murata K, Ohue M, Sasaki Y, Imaoka S, Miyamoto Y (2007) Evaluation of laser microdissection as a tool in cancer glycomic studies. Biochem Biophys Res Commun 352(3):579–586. https://doi.org/10.1016/j.bbrc.2006.10.191
Murray GI (2007) An overview of laser microdissection technologies. Acta Histochem 109(3):171–176. https://doi.org/10.1016/j.acthis.2007.02.001
Sturm D, Marselli L, Ehehalt F, Richter D, Distler M, Kersting S, Grutzmann R, Bokvist K, Froguel P, Liechti R, Jorns A, Meda P, Baretton GB, Saeger HD, Schulte AM, Marchetti P, Solimena M (2013) Improved protocol for laser microdissection of human pancreatic islets from surgical specimens. J Vis Exp (71). doi:https://doi.org/10.3791/50231
Espina V, Wulfkuhle JD, Calvert VS, VanMeter A, Zhou W, Coukos G, Geho DH, Petricoin EF 3rd, Liotta LA (2006) Laser-capture microdissection. Nat Protoc 1(2):586–603. https://doi.org/10.1038/nprot.2006.85
Kuno A, Matsuda A, Ikehara Y, Narimatsu H, Hirabayashi J (2010) Differential glycan profiling by lectin microarray targeting tissue specimens. Methods Enzymol 478:165–179. https://doi.org/10.1016/S0076-6879
Koshi Y, Nakata E, Yamane H, Hamachi I (2006) A fluorescent lectin array using supramolecular hydrogel for simple detection and pattern profiling for various glycoconjugates. J Am Chem Soc 128(32):10413–10422. https://doi.org/10.1021/ja0613963
Lehr HP, Reimann M, Brandenburg A, Sulz G, Klapproth H (2003) Real-time detection of nucleic acid interactions by total internal reflection fluorescence. Anal Chem 75(10):2414–2420
Uchiyama N, Kuno A, Koseki-Kuno S, Ebe Y, Horio K, Yamada M, Hirabayashi J (2006) Development of a lectin microarray based on an evanescent-field fluorescence principle. Methods Enzymol 415:341–351. https://doi.org/10.1016/S0076-6879(06)15021-1
Uchiyama N, Kuno A, Tateno H, Kubo Y, Mizuno M, Noguchi M, Hirabayashi J (2008) Optimization of evanescent-field fluorescence-assisted lectin microarray for high-sensitivity detection of monovalent oligosaccharides and glycoproteins. Proteomics 8(15):3042–3050. https://doi.org/10.1002/pmic.200701114
Zhao R, Liu X, Wang Y, Jie X, Qin R, Qin W, Zhang M, Tai H, Yang C, Li L, Peng P, Shao M, Zhang X, Wu H, Ruan Y, Xu C, Ren S, Gu J (2016) Integrated glycomic analysis of ovarian cancer side population cells. Clin Proteomics 13:32. https://doi.org/10.1186/s12014-016-9131-z
Matsuda A, Kuno A, Ishida H, Kawamoto T, Shoda J, Hirabayashi J (2008) Development of an all-in-one technology for glycan profiling targeting formalin-embedded tissue sections. Biochem Biophys Res Commun 370(2):259–263. https://doi.org/10.1016/j.bbrc.2008.03.090
Tateno H, Uchiyama N, Kuno A, Togayachi A, Sato T, Narimatsu H, Hirabayashi J (2007) A novel strategy for mammalian cell surface glycome profiling using lectin microarray. Glycobiology 17(10):1138–1146. https://doi.org/10.1093/glycob/cwm084
Ltd. G (2016) GlycoTechnia Ltd. http://www.glycotechnica.com/english/products.htm. Accessed Oct 2017
Zheng T, Peelen D, Smith LM (2005) Lectin arrays for profiling cell surface carbohydrate expression. J Am Chem Soc 127(28):9982–9983. https://doi.org/10.1021/ja0505550
Pilobello KT, Slawek DE, Mahal LK (2007) A ratiometric lectin microarray approach to analysis of the dynamic mammalian glycome. Proc Natl Acad Sci U S A 104(28):11534–11539. https://doi.org/10.1073/pnas.0704954104
Pilobello KT, Agrawal P, Rouse R, Mahal LK (2013) Advances in lectin microarray technology: optimized protocols for piezoelectric print conditions. Curr Protoc Chem Biol 5(1):1–23. https://doi.org/10.1002/9780470559277.ch120035
Fromell K, Andersson M, Elihn K, Caldwell KD (2005) Nanoparticle decorated surfaces with potential use in glycosylation analysis. Colloids Surf B Biointerfaces 46(2):84–91. https://doi.org/10.1016/j.colsurfb.2005.06.017
Burtis CA, Ashwood ER, Tietz NW (1999) Tietz textbook of clinical chemistry, 3rd edn. W.B. Saunders, New York
MSaM B (2015) Glycosylation in cell culture. In: Al-Rubeai M (ed) Animal cell culture. Springer, NY, pp 237–258
Patnaik SK, Stanley P (2006) Lectin-resistant CHO glycosylation mutants. Methods Enzymol 416:159–182. https://doi.org/10.1016/S0076-6879(06)16011-5
North SJ, Huang HH, Sundaram S, Jang-Lee J, Etienne AT, Trollope A, Chalabi S, Dell A, Stanley P, Haslam SM (2010) Glycomics profiling of Chinese hamster ovary cell glycosylation mutants reveals N-glycans of a novel size and complexity. J Biol Chem 285(8):5759–5775. https://doi.org/10.1074/jbc.M109.068353
Cavazzini A, Pasti L, Massi A, Marchetti N, Dondi F (2011) Recent applications in chiral high performance liquid chromatography: a review. Anal Chim Acta 706(2):205–222. https://doi.org/10.1016/j.aca.2011.08.038
Cheung RC, Wong JH, Ng TB (2012) Immobilized metal ion affinity chromatography: a review on its applications. Appl Microbiol Biotechnol 96(6):1411–1420. https://doi.org/10.1007/s00253-012-4507-0
Hibbert DB (2012) Experimental design in chromatography: a tutorial review. J Chromatogr B Analyt Technol Biomed Life Sci 910:2–13. https://doi.org/10.1016/j.jchromb.2012.01.020
Pfaunmiller EL, Paulemond ML, Dupper CM, Hage DS (2013) Affinity monolith chromatography: a review of principles and recent analytical applications. Anal Bioanal Chem 405(7):2133–2145. https://doi.org/10.1007/s00216-012-6568-4
Yamashita K, Ohkura T (2014) Determination of glycan motifs using serial lectin affinity chromatography. Methods Mol Biol 1200:79–92. https://doi.org/10.1007/978-1-4939-1292-6_7
Tateno H, Nakamura-Tsuruta S, Hirabayashi J (2007) Frontal affinity chromatography: sugar-protein interactions. Nat Protoc 2(10):2529–2537. https://doi.org/10.1038/nprot.2007.357
Zeng Z, Hincapie M, Pitteri SJ, Hanash S, Schalkwijk J, Hogan JM, Wang H, Hancock WS (2011) A proteomics platform combining depletion, multi-lectin affinity chromatography (M-LAC), and isoelectric focusing to study the breast cancer proteome. Anal Chem 83(12):4845–4854. https://doi.org/10.1021/ac2002802
Jung K, Cho W, Regnier FE (2009) Glycoproteomics of plasma based on narrow selectivity lectin affinity chromatography. J Proteome Res 8(2):643–650. https://doi.org/10.1021/pr8007495
Song E, Zhu R, Hammoud ZT, Mechref Y (2014) LC-MS/MS quantitation of esophagus disease blood serum glycoproteins by enrichment with hydrazide chemistry and lectin affinity chromatography. J Proteome Res 13(11):4808–4820. https://doi.org/10.1021/pr500570m
Drake PM, Schilling B, Niles RK, Prakobphol A, Li B, Jung K, Cho W, Braten M, Inerowicz HD, Williams K, Albertolle M, Held JM, Iacovides D, Sorensen DJ, Griffith OL, Johansen E, Zawadzka AM, Cusack MP, Allen S, Gormley M, Hall SC, Witkowska HE, Gray JW, Regnier F, Gibson BW, Fisher SJ (2012) Lectin chromatography/mass spectrometry discovery workflow identifies putative biomarkers of aggressive breast cancers. J Proteome Res 11(4):2508–2520. https://doi.org/10.1021/pr201206w
Cummings RD, Kornfeld S (1982) Fractionation of asparagine-linked oligosaccharides by serial lectin-Agarose affinity chromatography. A rapid, sensitive, and specific technique. J Biol Chem 257(19):11235–11240
Lehoux S, Ju T (2017) Separation of two distinct O-glycoforms of human IgA1 by serial lectin chromatography followed by mass spectrometry O-glycan analysis. Methods Enzymol 585:61–75. https://doi.org/10.1016/bs.mie.2016.10.003
Kasai K, Oda Y, Nishikata M, Ishii S (1986) Frontal affinity chromatography: theory for its application to studies on specific interactions of biomolecules. J Chromatogr 376:33–47
Kasai K (2014) Frontal affinity chromatography: a unique research tool for biospecific interaction that promotes glycobiology. Proc Jpn Acad Ser B Phys Biol Sci 90(7):215–234
Nakamura-Tsuruta S, Uchiyama N, Hirabayashi J (2006) High-throughput analysis of lectin-oligosaccharide interactions by automated frontal affinity chromatography. Methods Enzymol 415:311–325. https://doi.org/10.1016/S0076-6879(06)15019-3
Hirabayashi J, Arata Y, Kasai K (2003) Frontal affinity chromatography as a tool for elucidation of sugar recognition properties of lectins. Methods Enzymol 362:353–368
Arata Y, Hirabayashi J, Kasai KI (2001) Application of reinforced frontal affinity chromatography and advanced processing procedure to the study of the binding property of a Caenorhabditis elegans galectin. J Chromatogr A 905(1–2):337–343
Hirabayashi J, Hashidate T, Arata Y, Nishi N, Nakamura T, Hirashima M, Urashima T, Oka T, Futai M, Muller WE, Yagi F, Kasai K (2002) Oligosaccharide specificity of galectins: a search by frontal affinity chromatography. Biochim Biophys Acta 1572(2–3):232–254
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Science+Business Media, LLC, part of Springer Nature
About this protocol
Cite this protocol
Pearson, A.J., Gallagher, E.S. (2019). Overview of Characterizing Cancer Glycans with Lectin-Based Analytical Methods. In: Haznadar, M. (eds) Cancer Metabolism. Methods in Molecular Biology, vol 1928. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9027-6_20
Download citation
DOI: https://doi.org/10.1007/978-1-4939-9027-6_20
Published:
Publisher Name: Humana Press, New York, NY
Print ISBN: 978-1-4939-9026-9
Online ISBN: 978-1-4939-9027-6
eBook Packages: Springer Protocols