Skip to main content

Yeast Surface Display and Cell Sorting of Antigen-Binding Fc Fragments

  • Protocol
  • First Online:
Book cover Recombinant Protein Production in Yeast

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1923))

Abstract

Since the introduction of the yeast display platform, this method has increasingly gained popularity for the discovery and affinity maturation of antibodies and other protein scaffolds intended for antigen recognition. Yeast display is particularly well suited for the selection of antigen-binding Fc fragments (Fcabs) as it allows rapid combinatorial library construction via gap repair-driven homologous recombination and an efficient display of a glycosylated Fc able to interact with Fcγ receptors. Apart from expression-related normalization, isolation of properly folded Fcabs can be guided efficiently by simultaneous staining with ligands such as protein A, FcγRI, or the conformation-sensitive anti-FigCH2 antibody, whose binding is critically dependent on the integrity of the Fc structure. The particular properties of the Fcab scaffold, such as its homodimeric state which can promote binding to multiple antigen molecules, require modifications of traditional affinity maturation strategies. Preferred to equilibrium selections are kinetically driven antigen selections, designed to specifically influence the binding off-rate, which in many cases augments the desired biological effect. A simple design of a yeast-displayed heterodimeric Fc fragment is described and can be used as a general guideline for affinity selection of Fcabs with an asymmetric binding site. Overall, this chapter underlines the importance of the versatile yeast display technique for the optimization of the novel Fcab scaffold for antigen recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wozniak-Knopp G, Bartl S, Bauer A et al (2010) Introducing antigen-binding sites in structural loops of immunoglobulin constant domains: Fc fragments with engineered HER2/neu-binding sites and antibody properties. Protein Eng Des Sel 23(4):289–297. https://doi.org/10.1093/protein/gzq005

    Article  CAS  PubMed  Google Scholar 

  2. Leung KM, Batey S, Rowlands R et al (2015) A HER2-specific modified Fc fragment (Fcab) induces antitumor effects through degradation of HER2 and apoptosis. Mol Ther 23(11):1722–1733. https://doi.org/10.1038/mt.2015.127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hasenhindl C, Traxlmayr MW, Wozniak-Knopp G et al (2013) Stability assessment on a library scale: a rapid method for the evaluation of the commutability and insertion of residues in C-terminal loops of the CH3 domains of IgG1-Fc. Protein Eng Des Sel 26(10):675–682. https://doi.org/10.1093/protein/gzt041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Boder ET, Wittrup KD (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 15(6):553–557. https://doi.org/10.1038/nbt0697-553

    Article  CAS  PubMed  Google Scholar 

  5. Traxlmayr MW, Lobner E, Antes B et al (2013) Directed evolution of Her2/neu-binding IgG1-Fc for improved stability and resistance to aggregation by using yeast surface display. Protein Eng Des Sel 26(4):255–265. https://doi.org/10.1093/protein/gzs102

    Article  CAS  PubMed  Google Scholar 

  6. Traxlmayr MW, Lobner E, Hasenhindl C et al (2014) Construction of pH-sensitive Her2-binding IgG1-Fc by directed evolution. Biotechnol J 9(8):1013–1022. https://doi.org/10.1002/biot.201300483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Poulsen TR, Jensen A, Haurum JS et al (2011) Limits for antibody affinity maturation and repertoire diversification in hypervaccinated humans. J Immunol 187(8):4229–4235. https://doi.org/10.4049/jimmunol.1000928

    Article  CAS  PubMed  Google Scholar 

  8. Chames P, Van Regenmortel M, Weiss E et al (2009) Therapeutic antibodies: successes, limitations and hopes for the future. Br J Pharmacol 157(2):220–233. https://doi.org/10.1111/j.1476-5381.2009.00190.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schier R, Balint RF, McCall A et al (1996) Identification of functional and structural amino-acid residues by parsimonious mutagenesis. Gene 169(2):147–155

    Article  CAS  Google Scholar 

  10. Chen Y, Wiesmann C, Fuh G et al (1999) Selection and analysis of an optimized anti-VEGF antibody: crystal structure of an affinity-matured Fab in complex with antigen. J Mol Biol 293(4):865–881. https://doi.org/10.1006/jmbi.1999.3192

    Article  CAS  PubMed  Google Scholar 

  11. Razai A, Garcia-Rodriguez C, Lou J et al (2005) Molecular evolution of antibody affinity for sensitive detection of botulinum neurotoxin type A. J Mol Biol 351(1):158–169. https://doi.org/10.1016/j.jmb.2005.06.003

    Article  CAS  PubMed  Google Scholar 

  12. Chao G, Lau WL, Hackel BJ et al (2006) Isolating and engineering human antibodies using yeast surface display. Nat Protoc 1(2):755–768. https://doi.org/10.1038/nprot.2006.94

    Article  CAS  PubMed  Google Scholar 

  13. Shusta EV, Holler PD, Kieke MC et al (2000) Directed evolution of a stable scaffold for T-cell receptor engineering. Nat Biotechnol 18(7):754–759. https://doi.org/10.1038/77325

    Article  CAS  PubMed  Google Scholar 

  14. Traxlmayr MW, Faissner M, Stadlmayr G et al (2012) Directed evolution of stabilized IgG1-Fc scaffolds by application of strong heat shock to libraries displayed on yeast. Biochim Biophys Acta 1824(4):542–549. https://doi.org/10.1016/j.bbapap.2012.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Takechi Y, Yoshii H, Tanaka M et al (2011) Physicochemical mechanism for the enhanced ability of lipid membrane penetration of polyarginine. Langmuir 27(11):7099–7107. https://doi.org/10.1021/la200917y

    Article  CAS  PubMed  Google Scholar 

  16. Austerberry JI, Dajani R, Panova S et al (2017) The effect of charge mutations on the stability and aggregation of a human single chain Fv fragment. Eur J Pharm Biopharm 115:18–30. https://doi.org/10.1016/j.ejpb.2017.01.019

    Article  CAS  PubMed  Google Scholar 

  17. Novotny J, Bruccoleri R, Newell J et al (1983) Molecular anatomy of the antibody binding site. J Biol Chem 258(23):14433–14437

    CAS  PubMed  Google Scholar 

  18. Glanville J, D’Angelo S, Khan TA et al (2015) Deep sequencing in library selection projects: what insight does it bring? Curr Opin Struct Biol 33:146–160. https://doi.org/10.1016/j.sbi.2015.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lobner E, Humm AS, Goritzer K et al (2017) Fcab-HER2 Interaction: a Menage a Trois. Lessons from X-Ray and Solution Studies. Structure 25(6):878–889 e875. https://doi.org/10.1016/j.str.2017.04.014

    Article  CAS  PubMed  Google Scholar 

  20. Ridgway JB, Presta LG, Carter P (1996) ‘Knobs-into-holes’ engineering of antibody CH3 domains for heavy chain heterodimerization. Protein Eng 9(7):617–621

    Article  CAS  Google Scholar 

  21. Shields RL, Namenuk AK, Hong K et al (2001) High resolution mapping of the binding site on human IgG1 for Fc gamma RI, Fc gamma RII, Fc gamma RIII, and FcRn and design of IgG1 variants with improved binding to the Fc gamma R. J Biol Chem 276(9):6591–6604. https://doi.org/10.1074/jbc.M009483200

    Article  CAS  PubMed  Google Scholar 

  22. Weaver-Feldhaus JM, Lou J, Coleman JR et al (2004) Yeast mating for combinatorial Fab library generation and surface display. FEBS Lett 564(1–2):24–34. https://doi.org/10.1016/S0014-5793(04)00309-6

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The financial support by the Austrian Federal Ministry for Digital and Economic Affairs and the National Foundation for Research, Technology and Development is gratefully acknowledged. The company F-star has supported this work as well.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordana Wozniak-Knopp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sádio, F., Stadlmayr, G., Stadlbauer, K., Rüker, F., Wozniak-Knopp, G. (2019). Yeast Surface Display and Cell Sorting of Antigen-Binding Fc Fragments. In: Gasser, B., Mattanovich, D. (eds) Recombinant Protein Production in Yeast. Methods in Molecular Biology, vol 1923. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9024-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9024-5_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9023-8

  • Online ISBN: 978-1-4939-9024-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics