Skip to main content

Assay for Assessing Mitochondrial Function in iPSC-Derived Neural Stem Cells and Dopaminergic Neurons

  • Protocol
  • First Online:
Book cover Neural Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1919))

Abstract

Rapid and reliable assessment of mitochondrial bioenergetics is a vital tool in drug discovery studies aimed at reversing or improving mitochondrial dysfunction. Induced pluripotent stem cell (iPSC)-derived neural stem cells (NSCs) carry and replicate the donor disease pathology and can be an ideal cellular model for phenotypic screening of compounds. Herein we describe the use of Seahorse XFe96 analyzer to assess mitochondrial functions in iPSC-derived NSCs for drug screening.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443(7113):787–795

    Article  CAS  Google Scholar 

  2. Zhang J et al (2012) Measuring energy metabolism in cultured cells, including human pluripotent stem cells and differentiated cells. Nat Protoc 7(6):1068–1085

    Article  CAS  Google Scholar 

  3. Brand MD, Nicholls DG (2011) Assessing mitochondrial dysfunction in cells. Biochem J 435(2):297–312

    Article  CAS  Google Scholar 

  4. Wang R et al (2015) The acute extracellular flux (XF) assay to assess compound effects on mitochondrial function. J Biomol Screen 20(3):422–429

    Article  CAS  Google Scholar 

  5. Koopman M et al (2016) A screening-based platform for the assessment of cellular respiration in Caenorhabditis elegans. Nat Protoc 11(10):1798–1816

    Article  CAS  Google Scholar 

  6. Ozsvari B et al (2017) Mitoriboscins: Mitochondrial-based therapeutics targeting cancer stem cells (CSCs), bacteria and pathogenic yeast. Oncotarget 8(40):67457–67472

    Article  Google Scholar 

  7. Ribeiro SM, Gimenez-Cassina A, Danial NN (2015) Measurement of mitochondrial oxygen consumption rates in mouse primary neurons and astrocytes. Methods Mol Biol 1241:59–69

    Article  CAS  Google Scholar 

  8. Clerc P, Polster BM (2012) Investigation of mitochondrial dysfunction by sequential microplate-based respiration measurements from intact and permeabilized neurons. PLoS One 7(4):e34465

    Article  CAS  Google Scholar 

  9. Jiang T, Cadenas E (2014) Astrocytic metabolic and inflammatory changes as a function of age. Aging Cell 13(6):1059–1067

    Article  CAS  Google Scholar 

  10. Roy Choudhury G et al (2015) Methylene blue protects astrocytes against glucose oxygen deprivation by improving cellular respiration. PLoS One 10(4):e0123096

    Article  CAS  Google Scholar 

  11. Park SJ et al (2017) Metabolome profiling of partial and fully reprogrammed induced pluripotent stem cells. Stem Cells Dev 26(10):734–742

    Article  CAS  Google Scholar 

  12. Panopoulos AD et al (2012) The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming. Cell Res 22(1):168–177

    Article  CAS  Google Scholar 

  13. Rana P et al (2012) Characterization of human-induced pluripotent stem cell-derived cardiomyocytes: bioenergetics and utilization in safety screening. Toxicol Sci 130(1):117–131

    Article  CAS  Google Scholar 

  14. van der Windt GJ, Chang CH, Pearce EL (2016) Measuring bioenergetics in T cells using a seahorse extracellular flux analyzer. Curr Protoc Immunol 113:3 16B 1–3 16B 14

    Article  Google Scholar 

  15. Dong Z et al (2016) Focused screening of mitochondrial metabolism reveals a crucial role for a tumor suppressor Hbp1 in ovarian reserve. Cell Death Differ 23(10):1602–1614

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank the members of the Daadi laboratory for their helpful support and suggestions. This work was supported by the Worth Family Fund, the Perry & Ruby Stevens Charitable Foundation, the Robert J., Jr. and Helen C. Kleberg Foundation, the NIH primate center base grant (Office of Research Infrastructure Programs/OD P51 OD011133), and the National Center for Advancing Translational Sciences, National Institutes of Health, through Grant UL1 TR001120.

Disclosures: Dr. Marcel M. Daadi is founder of the biotech company NeoNeuron.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel M. Daadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Roy-Choudhury, G., Daadi, M.M. (2019). Assay for Assessing Mitochondrial Function in iPSC-Derived Neural Stem Cells and Dopaminergic Neurons. In: Daadi, M. (eds) Neural Stem Cells. Methods in Molecular Biology, vol 1919. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9007-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9007-8_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9005-4

  • Online ISBN: 978-1-4939-9007-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics