Skip to main content

Whole-Genome Single Nucleotide Polymorphism Microarray for Copy Number and Loss of Heterozygosity Analysis in Tumors

  • Protocol
  • First Online:
Tumor Profiling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1908))

  • 2514 Accesses


The basis of cancer biology is built upon two fundamental processes that result in uncontrolled cell proliferation and tumor formation: loss of tumor suppressor gene function and gain of oncogene function. Somatic DNA copy number variants (CNVs), which generally range in size from kilobases to entire chromosomes, facilitate gains and losses of chromosomal material incorporating oncogenes and tumor suppressor genes, respectively. In fact, many cancer types are characterized by DNA copy number changes and relatively few single nucleotide mutations (Ciriello et al. Nat Genet 45:1127–1133, 2013). Currently, the optimal method to detect such somatic copy number changes across the cancer genome is whole-genome single nucleotide polymorphism (SNP) microarray analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others


  1. Pinkel D, Segraves R, Sudar D et al (1998) High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet 20:207–211

    Article  CAS  Google Scholar 

  2. Li MM, Monzon FA, Biegel JA et al (2015) A multicenter, cross-platform clinical validation study of cancer cytogenomic arrays. Cancer Genet 208:525–536

    Article  CAS  Google Scholar 

  3. Sengüven B, Baris E, Oygur T, Berktas M (2014) Comparison of methods for the extraction of DNA from formalin-fixed, paraffin-embedded archival tissues. Int J Med Sci 11:494–499

    Article  Google Scholar 

  4. Sato-Otsubo A, Sanada M, Ogawa S (2012) Single-nucleotide polymorphism array karyotyping in clinical practice: where, when, and how? Semin Oncol 39:13–25

    Article  CAS  Google Scholar 

  5. Cooley LD, Lebo M, Li MM et al (2013) American College of Medical Genetics and Genomics technical standards and guidelines: microarray analysis for chromosome abnormalities in neoplastic disorders. Genet Med 15(6):484–494.

    Article  CAS  PubMed  Google Scholar 

  6. Clinical and Laboratory Standards Institute (CLSI) Genomic copy number microarrays for constitutional genetic and oncology applications, 1st edn., MM21 Ed1EN1–56238–915-7, Wayne, PA

    Google Scholar 

  7. Nancarrow DJ, Handoko HY, Stark MS et al (2007) SiDCoN: a tool to aid scoring of DNA copy number changes in SNP chip data. PLoS One 2(10):e1093

    Article  Google Scholar 

  8. Conlin LK, Thiel BD, Bonnemann CG et al (2010) Mechanisms of mosaicism, chimerism and uniparental disomy identified by single nucleotide polymorphism array analysis. Hum Mol Genet 19(7):1263–1275

    Article  CAS  Google Scholar 

  9. Wolff AC, Hammond ME, Hicks DG et al (2013) Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol 31(31):3997–4013

    Article  Google Scholar 

  10. Ambros PF, Ambros IM, SIOP Europe Neuroblastoma Pathology, Biology, and Bone Marrow Group (2001) Pathology and biology guidelines for resectsable and unresectable neuroblastic tumors and bone marrow examination guidelines. Med Pediatr Oncol 37(6):492–504

    Article  CAS  Google Scholar 

  11. Rode A, Maass KK, Willmund KV et al (2016) Chromothripsis in cancer cells: an update. Int J Cancer 138(10):2322–2333

    Article  CAS  Google Scholar 

  12. Gisselsson D, Håkanson U, Stoller P et al (2008) When the genome plays dice: circumvention of the spindle assembly checkpoint and near-random chromosome segregation in multipolar cancer cell mitoses. PLoS One 3(4):e1871

    Article  Google Scholar 

  13. Green RC, Berg JS, Grody WW et al (2013) ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genet Med 15:565–574

    Article  CAS  Google Scholar 

  14. Hagenkord JM, Gatalica Z, Jonasch E, Monzon FA (2011) Clinical genomics of renal epithelial tumors. Cancer Genet 204:285–297

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Daynna J. Wolff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rowsey, R., Znoyko, I., Wolff, D.J. (2019). Whole-Genome Single Nucleotide Polymorphism Microarray for Copy Number and Loss of Heterozygosity Analysis in Tumors. In: Murray, S. (eds) Tumor Profiling. Methods in Molecular Biology, vol 1908. Humana Press, New York, NY.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9002-3

  • Online ISBN: 978-1-4939-9004-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics