Advertisement

Biological Interpretation of Complex Genomic Data

  • Kathleen M. FischEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1908)

Abstract

Tumor genomic profiling involves analyzing many data types to produce a molecular profile of a tumor. Many of these analyses result in a prioritized list of genes or variants for further study. Interpretation of these lists relies upon annotating and extracting biological meaning through literature and manually curated knowledge bases. This chapter will describe several of these approaches including gene annotation, variant annotation, clinical annotation, functional enrichment analyses, and network analyses. Taken together or individually, these analyses will result in a biological understanding of complex genomic data to improve clinical decision making.

Key words

Computational biology Bioinformatics Variant annotation Pathway analysis Network analysis Functional enrichment Genomic interpretation 

References

  1. 1.
    Hoadley KA, Yau C, Wolf DM et al (2014) Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell 158:929–944CrossRefGoogle Scholar
  2. 2.
    Kandoth C, McLellan MD, Vandin F et al (2013) Mutational landscape and significance across 12 major cancer types. Nature 502:333–339CrossRefGoogle Scholar
  3. 3.
    Tamborero D, Gonzalez-Perez A, Perez-Llamas C et al (2013) Comprehensive identification of mutational cancer driver genes across 12 tumor types. Sci Rep 3:2650CrossRefGoogle Scholar
  4. 4.
    Dienstmann R, Dong F, Borger D et al (2014) Standardized decision support in next generation sequencing reports of somatic cancer variants. Mol Oncol 8:859–873CrossRefGoogle Scholar
  5. 5.
    Moreau Y, Tranchevent LC (2012) Computational tools for prioritizing candidate genes: boosting disease gene discovery. Nat Rev Genet 13:523–536CrossRefGoogle Scholar
  6. 6.
    Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high throughput sequencing data. Nucleic Acids Res 38(16):e164CrossRefGoogle Scholar
  7. 7.
    Wu C, MacLeod I, Su A (2013) BioGPS and MyGene.info: organizing online, gene-centric information. Nucleic Acids Res 41:D561–D565CrossRefGoogle Scholar
  8. 8.
    Wu CW, Mark A, Su AI (2014) MyGene.Info: gene annotation query as a service. bioRxiv.  https://doi.org/10.1101/009332
  9. 9.
    Xin J, Mark A, Afrasiabi C et al (2016) High-performance web services for querying gene and variant annotation. Genome Biol 17:1–7CrossRefGoogle Scholar
  10. 10.
    Gao J, Aksoy BA, Dogrusoz U et al (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6(269):pl1CrossRefGoogle Scholar
  11. 11.
    Griffith M, Griffith OL, Coffman AC et al (2013) DGIdb: mining the druggable genome. Nat Methods 10:1209–1210CrossRefGoogle Scholar
  12. 12.
    Wagner AH, Coffman AC, Ainscough BJ et al (2016) DGIdb 2.0: mining clinically relevant drug-gene interactions. Nucleic Acids Res 44:D1036–D1044CrossRefGoogle Scholar
  13. 13.
    Chen J, Bardes E, Aronow B et al (2009) ToppGene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res 37:W305–W311CrossRefGoogle Scholar
  14. 14.
    Wang J, Duncan D, Shi Z et al (2013) WEB-based GEne SeT analysis toolkit (WebGestalt): update 2013. Nucleic Acids Res 41:W77–W83CrossRefGoogle Scholar
  15. 15.
    Mitra K, Carvunis AR, Ramesh SK et al (2013) Integrative approaches for finding modular structure in biological networks. Nat Rev Genet 14:719–732CrossRefGoogle Scholar
  16. 16.
    Forbes SA, Bindal N, Bamford S et al (2011) COSMIC: mining complete cancer genomes in the catalogue of somatic mutations in cancer. Nucleic Acids Res 39:D945–D950CrossRefGoogle Scholar
  17. 17.
    Weinstein JN, Collisson EA, Cancer Genome Atlas Research Network et al (2013) The cancer genome atlas pan-cancer analysis project. Nat Genet 45:1113–1120CrossRefGoogle Scholar
  18. 18.
    Eyre TA, Ducluzeau F, Sneddon TP et al (2006) The HUGO gene nomenclature database, 2006 updates. Nucleic Acids Res 34:D319–D321CrossRefGoogle Scholar
  19. 19.
    Brown GR, Hem V, Katz KS et al (2015) Gene: a gene-centered information resource at NCBI. Nucleic Acids Res 43:D36–D42CrossRefGoogle Scholar
  20. 20.
    Flicek P, Ahmed I, Amode MR et al (2013) Ensembl 2013. Nucleic Acids Res 41:D48–D55CrossRefGoogle Scholar
  21. 21.
    den Dunnen JT, Antonarakis SE (2000) Mutation nomenclature extensions and suggestions to describe complex mutations: a discussion. Hum Mutat 15:7–12CrossRefGoogle Scholar
  22. 22.
    Smedley D, Haider S, Durinck S et al (2015) The BioMart community portal: an innovative alternative to large, centralized data repositories. Nucleic Acids Res 43(W1):W589–W598CrossRefGoogle Scholar
  23. 23.
    Liu X, Jian X, Boerwinkle E (2013) dbNSFP v2. 0: a database of human non-synonymous SNVs and their functional predictions and annotations. Hum Mutat 34:E2393–E2402CrossRefGoogle Scholar
  24. 24.
    Sherry ST, Ward MH, Kholodov M et al (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 29:308–311CrossRefGoogle Scholar
  25. 25.
    Landrum MJ, Lee JM, Riley GR et al (2014) ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res 42:D980–D985CrossRefGoogle Scholar
  26. 26.
    Kircher M, Witten DM, Jain P et al (2014) A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet 46:310–315CrossRefGoogle Scholar
  27. 27.
    Van Allen EM, Wagle N, Stojanov P et al (2014) Whole-exome sequencing and clinical interpretation of formalin-fixed, paraffin-embedded tumor samples to guide precision cancer medicine. Nat Med 20:682–688CrossRefGoogle Scholar
  28. 28.
    Law V, Knox C, Djoumbou Y et al (2014) DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res 42:D1091–D1097CrossRefGoogle Scholar
  29. 29.
    Hewett M, Oliver DE, Rubin DL et al (2002) PharmGKB: the pharmacogenetics knowledge base. Nucleic Acids Res 30:163–165CrossRefGoogle Scholar
  30. 30.
    Ciriello G, Miller ML, Aksoy BA et al (2013) Emerging landscape of oncogenic signatures across human cancers. Nat Genet 45:1127–1133CrossRefGoogle Scholar
  31. 31.
    Guo Y, Sheng Q, Li J et al (2013) Large scale comparison of gene expression levels by microarrays and RNAseq using TCGA data. PLoS One 8:e71462CrossRefGoogle Scholar
  32. 32.
    Ramanan VK, Shen L, Moore JH et al (2012) Pathway analysis of genomic data: concepts, methods, and prospects for future development. Trends Genet 28:323–332CrossRefGoogle Scholar
  33. 33.
    Zhang B, Kirov S, Snoddy J (2005) WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res 33:W741–W748CrossRefGoogle Scholar
  34. 34.
    Cline MS, Smoot M, Cerami E et al (2007) Integration of biological networks and gene expression data using Cytoscape. Nat Protoc 2:2366–2382CrossRefGoogle Scholar
  35. 35.
    Franceschini A, Szklarczyk D, Frankild S et al (2013) STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41:D808–D815CrossRefGoogle Scholar
  36. 36.
    Snel B, Lehmann G, Bork P et al (2000) STRING: a web-server to retrieve and display the repeatedly occurring neighbourhood of a gene. Nucleic Acids Res 28:3442–3444CrossRefGoogle Scholar
  37. 37.
    Zuberi K, Franz M, Rodriguez H et al (2013) GeneMANIA prediction server 2013 update. Nucleic Acids Res 41:W115–W122CrossRefGoogle Scholar
  38. 38.
    Blake JA, Dolan M, Gene Ontology Consortium et al (2013) Gene ontology annotations and resources. Nucleic Acids Res 41:D530–D535PubMedGoogle Scholar
  39. 39.
    Birmingham A, Mark AM, Mazzaferro C, Xu G, Fisch KM (2018) Efficient population-scale variant analysis and prioritization with VAPr. Bioinformatics 34(16):2843–2845CrossRefGoogle Scholar
  40. 40.
    Rosenthal SB, Len J, Webster M, Gary A, Birmingham A, Fisch KM (2018) Interactive network visualization in Jupyter notebooks: visJS2jupyter. Bioinformatics 34(1):126–128CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Medicine, Center for Computational Biology and BioinformaticsUniversity of California San DiegoLa JollaUSA

Personalised recommendations