Brem-Stecher B, Young C, Jaykus LA, Tortorello ML (2009) Sample preparation: the forgotten beginning. J Food Prot 72:1774–1789
Google Scholar
Dwivedi HP, Jaykus LA (2011) Detection of pathogens in foods: the current state-of the- art and future directions. Crit Rev Microbiol 37(1):40–63
CAS
PubMed
Google Scholar
Li X, Ximenes E, Amalaradjou MAR, Vibbert HB, Foster K, Jones J, Liu X, Bhunia AK, Ladisch MR (2013) Rapid sample processing for detection of food-borne pathogens via cross-flow microfiltration. Appl Environ Microbiol 79:7048–7054
CAS
PubMed
PubMed Central
Google Scholar
Cho I, Ku S (2017) Current technical approaches for the early detection of foodborne pathogens: challenges and opportunities. Int J Mol Sci 18(10):2078
PubMed Central
Google Scholar
Ladisch M.R., Ximenes E.A (2017) Methods and systems useful for foodborne pathogen detection. Patent # US US9651551 B2. Official Gazette of the United States Patent and Trademark Office Patents, Volume:1438 Issue:3 (Published on May 16, 2017)
Google Scholar
Vibbert HB, Ku S, Li X, Liu X, Kreke T, Deering A, Gehring A, Ximenes E, Ladisch M (2015) Accelerating sample preparation through enzyme-assisted microfiltration of Salmonella in chicken extract. Biotechnol Prog 31(6):1551–1562
CAS
PubMed
Google Scholar
Ku S, Ximenes E, Kreke T, Foster K, Deering AJ, Ladisch MR (2016) Microfiltration of enzyme treated egg whites for accelerated detection of viable Salmonella. Biotechnol Prog 32(6):1464–1471
CAS
PubMed
Google Scholar
Ku S, Kreke T, Ximenes E, Foster K, Liu X, Gilpin CJ, Ladisch MR (2017) Protein particulate retention and microorganism recovery for rapid detection of Salmonella. Biotechnol Prog 33(3):687–695
CAS
PubMed
Google Scholar
Bell RL, Jarvis KG, Ottesen AR, Mcfarland MA, Brown EW (2016) Recent and emerging innovations in Salmonella detection: a food and environmental perspective. Microb Biotechnol 2016(9):279–292
Google Scholar
Heyndrickx M, Vandekerchove D, Herman L, Rolliers I, Grijspeerdt K, De Zutter L (2002) Routes for Salmonella contamination of poultry meat: epidemiological study from hatchery to slaughterhouse. Epidemiol Infect 129:253–265
CAS
PubMed
PubMed Central
Google Scholar
Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson M-A, Roy S et al (2011) Foodborne illness acquired in the United States–major pathogens. Emerg InfectDis 17:7–15
Google Scholar
Anderson TC, Nguyen T-A, Adams JK et al (2016) Multistate outbreak of human Salmonella typhimurium infections linked to live poultry from agricultural feed stores and mail-order hatcheries, United States 2013. One Health 2:144–149
PubMed
PubMed Central
Google Scholar
Hale CR, Scallan E, Cronquist AB, Dunn J, Smith K, Robinson T et al (2012) Estimates of enteric illness attributable to contact with animals and their environments in the United States. Clin Infect Dis 54:S472–S479
PubMed
Google Scholar
Harris JR, Neil K, Barton Behravesh C, Sotir M, Angulo F (2010) Recent multistate outbreaks of human Salmonella infections acquired from turtles: a continuing public health challenge. Clin Infect Dis 50:554–559
PubMed
Google Scholar
Basler C, Forshey TM, Machesky K, Erdman CM, Gomez TM, Nguyen T-A et al (2014) Notes from the field: multistate outbreak of human Salmonella infections linked to live poultry from a mail-order hatchery in Ohio—March–September 2013. MMWR Morb Mortal Wkly Rep 63:222
PubMed
PubMed Central
Google Scholar
National association of state public health veterinarians animal contact compendium committee (2013) Compendium of measures to prevent disease associated with animals in public settings. J Am Vet Med Assoc 243:1270–1288
Google Scholar
Barton Behravesh C, Brinson D, Hopkins BA, Gomez TM (2014) Backyard poultry flocks and salmonellosis: a recurring, yet preventable public health challenge. Clin Infect Dis 58:1432–1438
Google Scholar
Mettee Zareki SL, Bennett SD, Hall J, Yaeger J, Lujan K, Adams-Cameron M et al (2013) US outbreak of human Salmonella infections associated with aquatic frogs, 2008–2011. Pediatrics 131:724–731
Google Scholar
United States Department of Agriculture (2012) Poultry urban chicken ownership in four U.S. cities, U.S. Department of Agriculture, Animal and Plant Health Inspection Services, Veterinary Services, Center for Epidemiology and Animal Health, Fort Collins, CO.
Google Scholar
Yaron S, Römling U (2014) Biofilm formation by enteric pathogens and its role in plant colonization and persistence. Microb Biotechnol 7(6):495–516
Google Scholar
Jacques M, Aragon V, Tremblay YD (2010) Biofilm formation in bacterial pathogens of veterinary importance. Anim Health Res Rev 11:97–121
PubMed
Google Scholar
Vogeleer P, Tremblay YDN, Mafu AA, Jacques M, Harel J (2014) Life on the outside: role of biofilms in environmental persistence of Shiga-toxin producing Escherichia coli. Front Microbiol 5(317):1–12
Google Scholar
Flemming H-C, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633
CAS
PubMed
Google Scholar
Ximenes E, Hoagland L, Ku S, Li X, Ladisch M (2017) Human pathogens in plant biofilms: formation, physiology, and detection. Biotechnol Bioeng 114(7):1403–1418
CAS
PubMed
Google Scholar
Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322
CAS
PubMed
Google Scholar
Sharpe AN, Peterkin PI, Dudas I (1979) Membrane filtration of food suspensions. Appl Environ Microbiol 37:21–35
CAS
PubMed
PubMed Central
Google Scholar
Foley G Crossflow microfiltration. SciTopics. 27 Nov 27 2008. http://www.scitopics.com/Crossflow_Microfiltration.html
Baker RW (2004) Membrane technology and applications, 2nd edn. J. Wiley, New York, NY, pp 89–155
Google Scholar
Hill VR, Polaczyk AL, Hahn D, Narayanan J, Cromeans TL, Roberts JM, Amburgey JE (2005) Development of a rapid method for simultaneous recovery of diverse microbes in drinking water by ultrafiltration with sodium polyphosphate and surfactants. Appl Environ Microbiol 71:6878–6884
CAS
PubMed
PubMed Central
Google Scholar
Liu P, Hill VR, Hahn D, Johnson TB, Pan Y, Jothikumar N, Moe CL (2012) Hollow-fiber ultrafiltration for simultaneous recovery of viruses, bacteria and parasites from reclaimed water. J Microbiol Methods 88:155–161
PubMed
Google Scholar
Morales-Morales HA, Vidal G, Olszewski J, Rock CM, Dasgupta D, Oshima KH, Smith GB (2003) Optimization of a reusable hollow-fiber ultrafilter for simultaneous concentration of enteric bacteria, protozoa, and viruses from water. Appl Environ Microbiol 69:4098–4102
CAS
PubMed
PubMed Central
Google Scholar
Smith CM, Hill VR (2009) Dead-end hollow-fiber ultrafiltration for recovery of diverse microbes from water. Appl Environ Microbiol 75:5284–5289
PubMed
PubMed Central
Google Scholar
Hunter DM, Leskinen SD, Magana S, Schlemmer SH, Lim PV (2011) Dead-end ultrafiltration concentration and IMS/ATP-bioluminescence detection of Escherichia coli O157:H7 in recreational water and produce wash. J Microbiol Methods 87:338–342
PubMed
Google Scholar
Kelly ST, Zydney AL (1997) Protein fouling during microfiltration: comparative behavior of different model proteins. Biotechnol Bioeng 55:91–100
CAS
PubMed
Google Scholar
Mukhopadhyay S, Tomasula PM, Van Hekken DL, Luchansky JB, Call JE, Porto-Fett AC (2009) Effectiveness of cross-flow microfiltration for removal of microorganisms associated with unpasteurized liquid egg white from process plant. J Food Sci 74:319–327
Google Scholar
United States Department of Agriculture. Food Safety and Inspection Service. Microbiology Laboratory Guidebook. Available at: http://www.fsis.usda.gov/wps/portal/fsis/topics/science/laboratories-and-procedures/guidebooks-and-methods/microbiology-laboratory-guidebook/microbiology-laboratory-guidebook. Accessed Feb 26 2018
U.S. Food and Drug Administration. BAM: Salmonella. Available at: https://www.fsis.usda.gov/wps/wcm/connect/700c05fe-06a2-492a-a6e1-3357f7701f52/MLG-4.pdf?MOD=AJPERES. Accessed Mar 19 2018
International Organization for Standardization. ISO-6579 (2002) Microbiology-general guidance on methods for the detection of Salmonella, 4th edn. International Organization for Standardization, Geneva: Switzerland
Google Scholar
Gole VC, Chousalkar KK, Roberts JR, Sexton M, May D, Tan J, Kiermeier A (2014) Effect of egg washing and correlation between eggshell characteristics and egg penetration by various Salmonella typhimurium strains. PLoS One 9:e90987
PubMed
PubMed Central
Google Scholar
Brewster J (2009) Large-volume filtration for recovery and concentration of Escherichia coli O157:h7 from ground beef. J Rapid Meth Aut Mic 17:242–256
Google Scholar
Mukhopadhyay S, Tomasula PM, Luchansky JB, Porto-Fett A, Call JE (2010) Removal of Salmonella Enteritidis from commercial unpasteurized liquid egg white using pilot scale cross flow tangential microfiltration. Int J Food Microbiol 142:309–317
PubMed
Google Scholar
Blanpain-Avet P, Faille C, Bénézech T (2009) Cleaning kinetics and related mechanisms of Bacillus cereus spore removal during an alkaline cleaning of a tubular ceramic microfiltration membrane. Desalin Water Treat 5:235–251
CAS
Google Scholar
Hein I, Flekna G, Krassnig M, Wagner M (2006) Real-time PCR for the detection of Salmonella spp. in food: an alternative approach to a conventional PCR system suggested by the FOOD-PCR project. J Microbiol Methods 66:538–547
CAS
PubMed
Google Scholar
Puolanne E, Kivikari R (2000) Determination of the buffering capacity of postrigor meat. Meat Sci 56:7–13
CAS
PubMed
Google Scholar
Dickson J, Manke T, Wesley I, Baetz A (1996) Biphasic culture of Arcobacter spp. Lett Appl Microbiol 22:195–198
CAS
PubMed
Google Scholar
Malorny B, Hoorfar J, Bunge C, Helmuth R (2003) Multicenter validation of the analytical accuracy of Salmonella PCR: towards an international standard. Appl Environ Microbiol 69:290–296
CAS
PubMed
PubMed Central
Google Scholar