Skip to main content

In Vivo Models of Mechanical Loading

  • Protocol
  • First Online:
Bone Research Protocols

Abstract

The skeleton fulfils its mechanical functions through structural organization and material properties of individual bones. It is stated that both cortical and trabecular morphology and mass can be (re)modelled in response to changes in mechanical strains engendered by load-bearing. To address this, animal models that enable the application of specific loads to individual bones have been developed. These are useful in defining how loading modulates (re)modeling and allow examination of the mechanisms that coordinate these events. This chapter describes how to apply mechanical loading to murine bones through points of articulation, which allows changes in endosteal, periosteal as well as trabecular bone to be revealed at multiple hierarchies, by a host of methodologies, including double fluorochrome labeling and computed tomography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frost H (1983) A determinant of bone architecture: the minimum effective strain. Clin Orthop Relat Res 175:286–292

    Google Scholar 

  2. Frost HM (1988) Vital biomechanics: proposed general concepts for skeletal adaptations to mechanical usage. Calcif Tissue Int 42(3):145–156

    Article  CAS  Google Scholar 

  3. Frost HM (1987) The mechanostat: a proposed pathogenic mechanism of osteoporoses and the bone mass effects of mechanical and nonmechanical agents. Bone Miner 2(2):73–85

    CAS  PubMed  Google Scholar 

  4. Lanyon L, Rubin C (1984) Static vs dynamic loads as an influence on bone remodelling. J Biomech 17(12):897–905

    Article  CAS  Google Scholar 

  5. Curtis TA, Ashrafi SH, Weber DF (1985) Canalicular communication in the cortices of human long bones. Anat Rec 212(4):336–344

    Article  CAS  Google Scholar 

  6. Lanyon L (1996) Using functional loading to influence bone mass and architecture: objectives, mechanisms, and relationship with estrogen of the mechanically adaptive process in bone. Bone 18(1):S37–S43

    Article  Google Scholar 

  7. Hert J, Liskova M, Landa J (1971) Reaction of bone to mechanical stimuli. 1. Continuous and intermittent loading of tibia in rabbit. Folia Morphol (Warsz) 19(3):290–300

    CAS  Google Scholar 

  8. Lanyon L, Bourn S (1979) The influence of mechanical function on the development and remodeling of the tibia. An experimental study in sheep. J Bone Joint Surg Am 61(2):263–273

    Article  CAS  Google Scholar 

  9. Rubin C, Lanyon L (1984) Regulation of bone formation by applied dynamic loads. J Bone Joint Surg Am 66:397–402

    Article  CAS  Google Scholar 

  10. Rubin C, Lanyon L (1984) Dynamic strain similarity in vertebrates; an alternative to allometric limb bone scaling. J Theor Biol 107(2):321–327

    Article  CAS  Google Scholar 

  11. Turner C et al (1991) A noninvasive, in vivo model for studying strain adaptive bone modeling. Bone 12(2):73–79

    Article  CAS  Google Scholar 

  12. Pead MJ, Skerry TM, Lanyon LE (1988) Direct transformation from quiescence to bone formation in the adult periosteum following a single brief period of bone loading. J Bone Miner Res 3(6):647–656

    Article  CAS  Google Scholar 

  13. Mosley J, Lanyon L (1998) Strain rate as a controlling influence on adaptive modeling in response to dynamic loading of the ulna in growing male rats. Bone 23(4):313–318

    Article  CAS  Google Scholar 

  14. Turner CH, Owan I, Takano Y (1995) Mechanotransduction in bone: role of strain rate. Am J Physiol 269(3):E438–E442

    CAS  PubMed  Google Scholar 

  15. Hsieh YF et al (2001) Mechanical loading of diaphyseal bone in vivo: the strain threshold for an osteogenic response varies with location. J Bone Miner Res 16(12):2291–2297

    Article  CAS  Google Scholar 

  16. McLeod KJ, Rubin C (1992) The effect of low-frequency electrical fields on osteogenesis. JBJS 74(6):920–929

    Article  CAS  Google Scholar 

  17. Rubin C et al (2002) Mechanical strain, induced noninvasively in the high-frequency domain, is anabolic to cancellous bone, but not cortical bone. Bone 30(3):445–452

    Article  CAS  Google Scholar 

  18. Rubin C et al (2002) Quantity and quality of trabecular bone in the femur are enhanced by a strongly anabolic, noninvasive mechanical intervention. J Bone Miner Res 17(2):349–357

    Article  Google Scholar 

  19. Rubin C, Xu G, JUDEX S (2001) The anabolic activity of bone tissue, suppressed by disuse, is normalized by brief exposure to extremely low-magnitude mechanical stimuli. FASEB J 15(12):2225–2229

    Article  CAS  Google Scholar 

  20. Huang RP, Rubin CT, McLeod KJ (1999) Changes in postural muscle dynamics as a function of age. J Gerontol A Biomed Sci Med Sci 54(8):B352–B357

    Article  CAS  Google Scholar 

  21. Srinivasan S et al (2003) Enabling bone formation in the aged skeleton via rest-inserted mechanical loading. Bone 33(6):946–955

    Article  Google Scholar 

  22. Saxon L et al (2005) Mechanosensitivity of the rat skeleton decreases after a long period of loading, but is improved with time off. Bone 36(3):454–464

    Article  CAS  Google Scholar 

  23. Huddleston AL et al (1980) Bone mass in lifetime tennis athletes. JAMA 244(10):1107–1109

    Article  CAS  Google Scholar 

  24. Jones H, Priest JD, Hayes WC, Tichenor CC, Nagel DA (1977) Humeral hypertrophy in response to exercise. J Bone Joint Surg Am 59(2):204–208

    Article  CAS  Google Scholar 

  25. Lee E et al (1995) Variations in bone status of contralateral and regional sites in young athletic women. Med Sci Sports Exerc 27(10):1354–1361

    Article  CAS  Google Scholar 

  26. King J, Brelsford H, Tullos H (1969) Analysis of the pitching arm of the professional baseball pitcher. Clin Orthop Relat Res 67:116–123

    Article  CAS  Google Scholar 

  27. Beverly MC et al (1989) Local bone mineral response to brief exercise that stresses the skeleton. BMJ 299(6693):233–235

    Article  CAS  Google Scholar 

  28. Simkin A, Ayalon J, Leichter I (1987) Increased trabecular bone density due to bone-loading exercises in postmenopausal osteoporotic women. Calcif Tissue Int 40(2):59–63

    Article  CAS  Google Scholar 

  29. Chambers TJ et al (1993) Induction of bone formation in rat tail vertebrae by mechanical loading. Bone Miner 20(2):167–178

    Article  CAS  Google Scholar 

  30. Lanyon L et al (1982) Mechanically adaptative bone remodelling. J Biomech 15(3):141–154

    Article  CAS  Google Scholar 

  31. Rubin C, Lanyon L (1987) Osteoregulation nature of mechanical stimuli: function as a determinant fr adaptative remodeling in bone. J Orthop Res 5(2):300–310

    Article  CAS  Google Scholar 

  32. Turner RT (1999) Mice, estrogen, and postmenopausal osteoporosis. J Bone Miner Res 14(2):187–191

    Article  CAS  Google Scholar 

  33. Beamer W et al (1996) Genetic variability in adult bone density among inbred strains if mice. Bone 18:397–403

    Article  CAS  Google Scholar 

  34. Brodt M, Ellis C, Silva M (1999) Growing C57Bl/6 mice increase whole bone mechanical properties by increasing geometric and material properties. J Bone Miner Res 14:2159–2166

    Article  CAS  Google Scholar 

  35. Torrance A et al (1994) Noninvasive loading of the rat ulna in vivo induces a strain-related modeling response uncomplicated by trauma or periostal pressure. Calcif Tissue Int 54(3):241–247

    Article  CAS  Google Scholar 

  36. Sztefek P et al (2010) Using digital image correlation to determine bone surface strains during loading and after adaptation of the mouse tibia. J Biomech 43(4):599–605

    Article  Google Scholar 

  37. Javaheri B et al (2015) Phospho1 deficiency transiently modifies bone architecture yet produces consistent modification in osteocyte differentiation and vascular porosity with ageing. Bone 81:277–291

    Article  CAS  Google Scholar 

  38. Salmon PL et al (2015) Structure model index does not measure rods and plates in trabecular bone. Front Endocrinol 13;6:162

    Google Scholar 

  39. Fritton S, Rubin C (2001) In vivo measurements of bone deformation using strain gauges. In: Cowin SCE (ed) Bone mechanics handbook. CRC Press, Boca Raton

    Google Scholar 

  40. Lanyon L, Smith R (1969) Measurements of bone strain in the walking animal. Res Vet Sci 10(1):93–94

    Article  CAS  Google Scholar 

  41. Baggott D, Lanyon L (1977) An independent ‘post-mortem’calibration of electrical resistance strain gauges bonded to bone surfaces ‘in vivo’. J Biomech 10(10):615621–619622

    Article  Google Scholar 

  42. Carter DR, Schwab GH, Spengler DM (1980) Tensile fracture of cancellous bone. Acta Orthop Scand 51(1–6):733–741

    Article  CAS  Google Scholar 

  43. Bay BK et al (1999) Digital volume correlation: three-dimensional strain mapping using X-ray tomography. Exp Mech 39(3):217–226

    Article  Google Scholar 

  44. Forwood M et al (1998) Modification of the in vivo four-point loading model for studying mechanically induced bone adaptation. Bone 23(3):307–310

    Article  CAS  Google Scholar 

  45. Reijnders CM et al (2007) Effect of mechanical loading on insulin-like growth factor-I gene expression in rat tibia. J Endocrinol 192(1):131–140

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew A. Pitsillides .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Javaheri, B. et al. (2019). In Vivo Models of Mechanical Loading. In: Idris, A. (eds) Bone Research Protocols. Methods in Molecular Biology, vol 1914. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8997-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8997-3_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8996-6

  • Online ISBN: 978-1-4939-8997-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics