Skip to main content

Characterization of Transplantable Insulinoma Cells

  • Protocol
  • First Online:
  • 7102 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1916))

Abstract

This chapter describes the propagation and characterization of transplantable insulinoma cells as model of insulin-producing pancreatic islet cells in the rat. Here, the cells are propagated by transplantation into rats followed by harvesting after growth for approximately 1 month. The cells are then purified by Percoll density gradient centrifugation and characterized by pulse-chase radiolabelling and immunoprecipitation of the insulin-related peptides. The results show that the transplantable insulinoma cells produce insulin in a manner similar to that found in normal pancreatic islets.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Chick WL, Warren S, Chute RN, Like AA, Lauris V, Kitchen KC (1977) A transplantable insulinoma in the rat. Proc Natl Acad Sci U S A 74:628–632

    Article  CAS  Google Scholar 

  2. Sopwith AM, Hutton JC, Naber SP, Chick WL, Hales CN (1981) Insulin secretion by a transplantable rat islet cell tumour. Diabetologia 21:224–229

    Article  CAS  Google Scholar 

  3. Hutton JC, Penn EJ, Peshavaria M (1982) Isolation and characterisation of insulin secretory granules from a rat islet cell tumour. Diabetologia 23:365–373

    Article  CAS  Google Scholar 

  4. Hutton JC, Peshavaria M (1982) Proton-translocating Mg2+−dependent ATPase activity in insulin-secretory granules. Biochem J 204:161–170

    Article  CAS  Google Scholar 

  5. Davidson HW, Rhodes CJ, Hutton JC (1988) Intraorganellar calcium and pH control proinsulin cleavage in the pancreatic beta cell via two distinct site-specific endopeptidases. Nature (London) 333:93–96

    Article  CAS  Google Scholar 

  6. Hutton JC, Wong R, Davidson HW (2009) Isolation of dense core secretory vesicles from pancreatic endocrine cells by differential and density gradient centrifugation. Curr Protoc Cell Biol, Chapter 3: Unit 3.32. doi:https://doi.org/10.1002/0471143030.cb0332s42

  7. Kawada Y, Asahara SI, Sugiura Y, Sato A, Furubayashi A, Kawamura M et al (2017) Histone deacetylase regulates insulin signaling via two pathways in pancreatic β cells. PLoS One 12(9):e0184435. https://doi.org/10.1371/journal.pone.0184435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Davidson HW, Hutton JC (1987) The insulin-secretory-granule carboxypeptidase H. Purification and demonstration of involvement in proinsulin processing. Biochem J 245:575–582

    Article  CAS  Google Scholar 

  9. Bennett DL, Bailyes EM, Nielsen E, Guest PC, Rutherford NG, SD A et al (1992) Identification of the type 2 proinsulin processing endopeptidase as PC2, a member of the eukaryote subtilisin family. J Biol Chem 267:15229–15336

    CAS  PubMed  Google Scholar 

  10. Hutton JC, Davidson HW, Peshavaria M (1987) Proteolytic processing of chromogranin A in purified insulin granules. Formation of a 20 kDa N-terminal fragment (betagranin) by the concerted action of a Ca2+−dependent endopeptidase and carboxypeptidase H (EC 3.4.17.10). Biochem J 244:457–464

    Article  CAS  Google Scholar 

  11. Arden SD, Rutherford NG, Guest PC, Curry WJ, Bailyes EM, Johnston CF et al (1994) The post-translational processing of chromogranin A in the pancreatic islet: involvement of the eukaryote subtilisin PC2. Biochem J 298:521–528

    Article  CAS  Google Scholar 

  12. Penn EJ, Brocklehurst KW, Sopwith AM, Hales CN, Hutton JC (1982) Ca2+−-Calmodulin dependent myosin light-chain phosphorylating activity in insulin-secreting tissues. FEBS Lett 139:4–8

    Article  CAS  Google Scholar 

  13. Arden SD, Roep BO, Neophytou PI, Usac EF, Duinkerken G, de Vries RR et al (1996) Imogen 38: a novel 38-kD islet mitochondrial autoantigen recognized by T cells from a newly diagnosed type 1 diabetic patient. J Clin Invest 97:551–561

    Article  CAS  Google Scholar 

  14. Sheng H, Hassanali S, Nugent C, Wen L, Hamilton-Williams E, Dias P et al (2011) Insulinoma-released exosomes or microparticles are immunostimulatory and can activate autoreactive T cells spontaneously developed in nonobese diabetic mice. J Immunol 187:1591–1600

    Article  CAS  Google Scholar 

  15. Sobey WJ, Beer SF, Carrington CA, Clark PMS, Frank BH, Gray IP et al (1989) Sensitive and specific two site immunoradiometric assays for human insulin, proinsulin, 65-66 split and 32-33 split proinsulin. Biochem J 260:535–541

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Guest, P.C. (2019). Characterization of Transplantable Insulinoma Cells. In: Guest, P. (eds) Pre-Clinical Models. Methods in Molecular Biology, vol 1916. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8994-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8994-2_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8993-5

  • Online ISBN: 978-1-4939-8994-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics