Skip to main content
View expanded cover

Calpain pp 81–92Cite as

Immunohistochemical Localization of Calpains in the Amphibian Xenopus laevis

  • 559 Accesses

Part of the Methods in Molecular Biology book series (MIMB,volume 1915)

Abstract

Though histochemical techniques have been used for decades, they are still very important in basic research. They make it possible to work on fixed tissues and provide a large amount of information in a relatively short time and at a low cost. Here we describe methods for indirect immunohistochemistry and immunofluorescence on sections of tadpoles and tissues of adult amphibians belonging to the species Xenopus laevis. The objective is to localize calpains within tissues in order to understand their involvement in cellular processes.

Key words

  • Immunofluorescence
  • Immunohistochemistry
  • Calpains
  • Amphibians
  • Embryonic development

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-8988-1_7
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-8988-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ono Y, Sorimachi H (2012) Calpains: an elaborate proteolytic system. Biochim Biophys Acta 1824:224–236

    CAS  CrossRef  Google Scholar 

  2. Toyota H, Yanase N, Yoshimoto T, Moriyama M, Sudo T, Mizuguchi J (2003) Calpain-induced Bax-cleavage product is a more potent inducer of apoptotic cell death than wild-type Bax. Cancer Lett 189:221–230

    CAS  CrossRef  Google Scholar 

  3. Yajima Y, Kawashima S (2002) Calpain function in the differentiation of mesenchymal stem cells. Biol Chem 383:757–764

    CAS  CrossRef  Google Scholar 

  4. Arthur JS, Elce JS, Hegadorn C, Williams K, Greer PA (2000) Disruption of the murine calpain small subunit gene, CAPN4: calpain is essential for embryonic development, but not for cell growth and division. Mol Cell Biol 20:4474–4481

    CAS  CrossRef  Google Scholar 

  5. Zimmerman UJ, Boring L, Pak JH, Mukerjee N, Wang KK (2000) The calpain small subunit gene is essential: its inactivation results in embryonic lethality. IUBMB Life 50:63–68

    CAS  CrossRef  Google Scholar 

  6. Dutt P, Croall DE, Arthur JS, Veyra TD, Williams K, Elce JS, Greer PA (2006) M-Calpain is required for preimplantation embryonic development in mice. BMC Dev Biol 6:3

    CrossRef  Google Scholar 

  7. Lepage SE, Bruce AE (2008) Characterization and comparative expression of zebrafish calpain system genes during early development. Dev Dyn 237:819–829

    CAS  CrossRef  Google Scholar 

  8. Emori Y, Saigo K (1995) Calpain localization changes in coordination with actin-related cytoskeletal changes during early embryonic development of Drosophila. J Biol Chem 270:22652

    CAS  CrossRef  Google Scholar 

  9. Franco SJ, Huttenlocher A (2005) Regulating cell migration: calpains make the cut. J Cell Sci 118:3829–3838

    CAS  CrossRef  Google Scholar 

  10. Macqueen DJ, Wilcox AH (2014) Characterization of the definitive classical calpain family of vertebrates using phylogenetic, evolutionary and expression analyses. Open Biol 4:130219. https://doi.org/10.1098/rsob.130219

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  11. Sargianos N, Gaitanaki C, Beiste I (1994) Purification and characterization of m-calpain from the skeletal muscle of the amphibian Rana ridibunda. J Exp Zool 269:95–105

    CAS  CrossRef  Google Scholar 

  12. Sargianos N, Gaitanaki C, Beiste I (1995) Studies on the autolysis of m-calpain from the skeletal muscle of the amphibian Rana ridibunda. J Exp Zool 271:82–94

    CAS  CrossRef  Google Scholar 

  13. Cao Y, Zhao H, Grunz H (2001) XCL-2 is a novel m-type calpain and disrupts morphogenetic movements during embryogenesis in Xenopus laevis. Develop Growth Differ 43:563–571

    CAS  CrossRef  Google Scholar 

  14. Abrouk-Vérot L, Brun C, Exbrayat JM (2013) Expression patterns of CAPN1 and CAPN8b genes during embryogenesis in Xenopus laevis. CellBio 2:211–216

    CrossRef  Google Scholar 

  15. Di Primio C, Marracci S, Cecchettini A, Nardi I, Giorgi F, Fausto AM, Gambellini G, Mazzini M (2007) Differential tissue expression of a calpastatin isoform in Xenopus embryos. Micron 38:268–277

    CrossRef  Google Scholar 

  16. Moudilou EN, Mouterfi N, Exbrayat JM, Brun C (2010) Calpains expression during Xenopus laevis development. Tissue Cell 42:275–281

    CAS  CrossRef  Google Scholar 

  17. Exbrayat JM, Moudilou EA, Abrouk L, Brun C (2012) Apoptosis in amphibian development. Adv Biosci Biotechnol 3:669–678

    CAS  CrossRef  Google Scholar 

  18. Estabel J, Exbrayat JM (2002) Localisation des récepteurs AMPA/kaïnate dans les organes périphériques chez Xenopus laevis par immunohistochimie. Rev Fr Histotechnol 15:9–14

    Google Scholar 

  19. Estabel J, König N, Shiokawa K, Exbrayat JM (2005) Apoptosis in Xenopus genus. In: Scovassi I (ed) Apoptosis. Research Signpost, Trivandrum, pp 147–156

    Google Scholar 

  20. Moudilou M, Poirier AL, Brun C, Exbrayat JM (2009) Calpains expression during Xenopus laevis development. Mech Dev:S167

    Google Scholar 

  21. Hensey C, Gautier J (1998) Programmed cell death during Xenopus development: a spatio-temporal analysis. Dev Biol 203:36–48. https://doi.org/10.1006/dbio.1998.9028

    CAS  CrossRef  PubMed  Google Scholar 

  22. Brun C, Moudilou EN, Bouchot C, Abrouk-Vérot L, Exbrayat JM (2013) Relationships between calpains and glutamate or kainate-induced apoptosis in Xenopus laevis tadpoles. Folia Histochem Cytobiol 51:300–311

    CAS  CrossRef  Google Scholar 

  23. König N, Poluch S, Estabel J, Durand M, Drian MJ, Exbrayat JM (2001) Synaptic and non-synaptic AMPA receptors permeable to calcium. Jpn J Pharmacol 86:1–17

    CrossRef  Google Scholar 

  24. Estabel J, Mercer A, Koenig N, Exbrayat JM (2003) Programmed cell death in Xenopus laevis metamorphosis development prior to, and during, metamorphosis. Life Sci 73:3298–3306

    CrossRef  Google Scholar 

  25. Estabel J, Exbrayat JM (2005) AMPA receptors localization by immunohistochemistry in Xenopus tadpoles. In: Ananjeva N, Tsinenko O (eds) Herpetologia Petropolitana, pp 133–135

    Google Scholar 

  26. Nieuwkoop PD, Faber J (1967) Normal table of Xenopus laevis (Daudin). North-Holland Publishing Company, Amsterdam

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Lyon Catholic University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marie Exbrayat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Exbrayat, JM., Moudilou, E.N., Brun, C. (2019). Immunohistochemical Localization of Calpains in the Amphibian Xenopus laevis. In: Messer, J. (eds) Calpain. Methods in Molecular Biology, vol 1915. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-8988-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8988-1_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-8987-4

  • Online ISBN: 978-1-4939-8988-1

  • eBook Packages: Springer Protocols